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The Sampling Theorem and Linear Prediction
in Signal Analysis

P. L. Butzer, W. Splettstofier*) and R. L. Stens, Aachen

1 Introduction

The aim of this paper is to present a survey of results concerning the
Whittaker-Shannon sampling theorem and its various extensions, as well as on
linear prediction from samples of the past obtained at the Lehrstuhl A fiir Mathe-
matik, Aachen, during the last decade. It is not intended to be an up-dated version
of Jerri’s tutorial review [95] of papers on the sampling theorem, nor another
chapter to Higgins’ “five short stories about the cardinal series” [90]. Instead, our
goal is a systematic mathematical treatment of those extensions of the sampling
theorem and prediction theory that are closely related to the broad areas of
approximation theory and Fourier analysis. The main results are provided with
proofs or detailed sketches of them.

A major part of the treatment is directed towards questions posed during
our many contacts with electrical engineers in Germany, England and the USA
since 1970, a line of research that has generated about a hundred papers on the
subject (see [49]). This is, then, a mathematical treatise of problems that have
arisen from practical experience, but as presented in our professional style. The
materials to be discussed, which could form the basis for a course in signal analy-
sis, can be listed as follows:

1. Introduction
2. Notations and Auxiliary Results
3. The Classical (Shannon) Sampling Theory
3.1 Sampling expansions of bandlimited functions
3.2 Sampling representations of derivatives and Hilbert transforms
3.3 Reduction of the sampling rate; derivative sampling
3.4 Approximation of non-bandlimited functions by their sampling series; aliasing error
3.5 Further error estimates: truncation, amplitude and time-jitter errors
4. Generalized Sampling Series
4.1 General convergence theorems
4.2 Convergence theorems with rates for bandlimited kernels
4.3 Convergence theorems with rates for non-bandlimited kernels; B-spline kernels
4.4 Approximation of derivatives f(8) by samples of f
4.5 Truncation, amplitude and jitter errors for generalized sampling series

*) Supported by the Stiftung Volkswagenwerk.
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5. Linear Prediction in Terms of Samples from the Past
5.1 Existence of predictor coefficients for bandlimited functions
5.2 Suboptimal prediction sums
5.3 Difference methods for prediction
5.4 Error estimates
5.5 Prediction of non-bandlimited functions in terms of splines
6. Miscellaneous Topics
.1 The sampling theorem, Cauchy’s integral formula, Poisson’s summation formula and
approximate integration
2 Pointwise convergence of sampling series — Interpolation
3 Non-equidistantly spaced sampling
.4 The Walsh sampling theorem
5 Random signal functions
6 Multidimensional sampling

s o

The sampling theorem central to the discussion states that every signal
function f that is bandlimited to [—7#W, #W] for some W > 0, i.e., f is square inte-
grable (finite energy) and contains no frequencies higher than #W, can be com-
pletely reconstructed from its sampled values f(k/W), k € Z, in terms of (see Thm.
3.1 below)

(.1) fy= Y f(‘%) sinc (Wt—k) (tER),
k=—o0
where sinc (t) :=sin wt/mt for t # 0, and =1 for t = 0.

This result, the theoretical basis for modern pulse-code modulation communi-
cation systems, is usually attributed to Shannon [152] (1949) and Kotel’nikov
[103] (1933) in communication theory circles. On the other hand, the (sampling)
series in (1.1) is of considerable interest in mathematics — it was used for inter-
polation purposes by, for example, Hadamard [86] already in 1901, for approxi-
mation first by de la Vallée Poussin [187] in 1908, and is now usually termed the
cardinal series after E. T. Whittaker [ 193] (1915). Sometimes the sampling theo-
rem is even dated back to work of Cauchy and Lagrange; see [90; 95, 110] for
more detailed historical remarks.

Although the sampling theorem has been applied in several disciplines
where functions have to be reconstituted from measurements or sampled data,
as e.g. in optics or medical computer tomography [82; 126; 151], the most clas-
sical application is that of time-multiplex transmission of signal functions.
Already in the early days of commercial applications of telegraphy, during the
last century, communication engineers asked for the possibility of simultaneously
transmitting more than one signal along the same channel. It turned out, at first
experimentally, that it suffices to transmit just sampled values in order to obtain
the full signal at the receiver provided that the sampling rate was chosen large
enough. In that case the time gaps between these sample pulses still allow the
insertion of a couple of other different signals. The exact sampling rate 1/W neces-
sary, the so-called Nyquist rate, was only later determined theoretically, e.g. in the
papers cited above. Let us mention a more remote applied problem for which this
sampling rate is fundamental: the spacing of rail cross-ties obtained experimental-
ly for a railroad track is exactly that given by the Nyquist rate [96].

One may ask why a representation formula of type (1.1) can hold at all.
Note that (1.1) means in particular that f is uniquely determined by its values at
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the nodes k/W, k € Z, equally spaced apart on the real axis R. Now there is indeed
a uniqueness theorem for bandlimited functions, which are in particular entire
functions, stating that f(k/W) = 0 for k € Z implies f = 0 (cf. [184, p. 180]). Thus,
contrary to the uniqueness theorem for general entire functions, the set of points
where f vanishes need not have an accumulation point.

From these considerations it also follows that one cannot expect (1.1) to
hold if f is not bandlimited, so that it contains frequences up to infinity. But one
may hope that in this case

(1.2) f(t)—hm Z f(k)sinc(Wt—k) (tER).

> % K=o

One may then ask for conditions upon f such that (1.2) holds, so to estimate the
difference between f and the sampling series for fixed W > 0, i.e., the (aliasing)
error occurring when f is replaced by the series in (1.2) for some finite W > 0.
Necessary for (1.2) to hold is the continuity of f at point t, but this is not suffi-
cient as M. Theis showed [182] (1919). Indeed, (1.2) holds under more or less
restrictive conditions upon the smoothness of f in a neighbourhood of t.

. Since bandlimited functions are in particular entire functions, they can-
not vanish on an interval of positive length unless they vanish identically. This
means that (1.1) cannot hold for signals which are of finite duration (time-limited).
On the other hand, the theory concemned with (1.2) may indeed be applied to
duration-limited functions.

The fact that continuity does not suffice for the validity of (1.2) leads to
the question whether it is possible to have representations similar to (1.2), which
are valid provided f is just continuous at t. The answer is yes if the sinc-function

in (1.2) is replaced by a function ¢ satisfying Y. |e(t—k)| <o uniformly on

k=—o0
compact subsets of R together with Z o(t — k) =+/2m. In that case one has the
k=—o
generalized sampling series representation
. 1
(1.3) f(t)= lim —= Z N wleWt—k)
W = o 21r K=—oo

valid for every bounded signal f which is continuous at t. Moreover, (1.3) holds
uniformly in t € R if f is uniformly continuous on R. Similarly as for (1.2) one
can estimate the difference between f and the generalized series for fixed W. Par-
ticular functions ¢ for which (1.3) is valid are the well-known kernels of approxi-
mation theory, such as those of Fejér and de la Vallée Poussin. Of special interest
are certain linear combinations of B-splines to be constructed. They have com-
pact support so that the series of (1.3) even reduces to a rather handy finite sum
which has a fine rate of approximation.

When reconstructing a signal f(t) in terms of (1.1), (1.2) or (1.3), then the
sampled values f(k/W) are generally needed for all k € Z. This means, regarding t
as time, that information about f is needed not only from the past but also from
the future. So another basic problem of signal processing is to obtain a full signal f
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by using only samples from the past. In regard to this problem, also known as
prediction of signals, one has the representation

X n kT

1.4 f(t)=lim Y aknf(t———) (t€ER)
noee oy w

for f bandlimited to [-aW, 7W] and each T € (0, 1), the a, being real numbers

which can be given explicitly.

The function theoretic background of (1.4) is that under the given assump-
tions the signal f is uniquely determined by its values at t — kT/W for k €N, t
arbitrary, provided 0 <T < 1 (cf. [186, p. 186]. This means that if one reduces
the distance between the sampling points from 1/W in (1.1) to T/W as in (1.4)
and works with the series (1.4), then the samples need no longer be equally
spaced on the whole R but only on a half-axis. At the same time our results yield
a fairly elementary and constructive proof of this theorem of function theory.

It can also be asked, as it was the case with (1.1), what happens if f is not
bandlimited in (1.4). Then W has to be increased to infinity, similarly as for (1.2).
The difficulty then is that n and W must tend to infinity simultaneously in a man-
ner which depends on f.

Another approach to the prediction of signals is that in terms of generaliz-
ed sampling series in the form (1.3). If ¢ has support in (0, ), then p(Wt — k)
vanishes for all k € Z for which k/W > t. Hence, for the evaluation of the series
in (1.3), only samples at points lying strictly to the left of t are required. These
series will be seen to have many advantages in comparison to those of (1.4).

It is to be observed that the sums in (1.1), (1.2) and (1.3) are of convolu-
tion type. So the question arises whether the matter is somehow related to the
well-developped theory (see e.g. [41]) of (Fejér-type) convolution integrals

(W/A/2m) I f(uw)p(W(t — u))du, (1.3) being its discretized version. Whereas the

—o0

present theory for convolution sums is parallel to that for convolution integrals,
it is generally not possible to deduce the one from the other, as will be seen. The
sum in (1.1) is actually the discrete counterpart of the Fourier inversion integral

W o0
(1.5) f(t) =\/-—;7 | £'wevtdv=W | f(u) sinc (W(t — u))du.

— W — oo

So it is to be expected that many results known for this integral have their coun-
terpart for the sum (1.1).

As the great S. Bochner (11982) [15] conjectured, “the Poisson summa-
tion formula (PSF) and Cauchy’s integral and residue formulas are two different
aspects of a comprehensive broad gauged duality formula which lies athwart most
of analysis”. In this respect it will first be seen that the Shannon sampling theo-
rem (SST) in the form (1.1) and its generalization (1.2) to not necessarily band-
limited functions, or the approximate sampling theorem (AST) as it will be called
are particular cases of the PSF. Even more is true: the PSF follows from the
generalized form (1.2) of the SST by simply integrating it. Secondly, the general-
ized SST is not only equivalent to the PSF but also to a (particular) form of

b
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Cauchy’s integral formula, so that all three results, which are fundamental theo-
rems in three different fields — namely Fourier analysis, signal theory and com-
plex function theory — are basically equivalent to one another.

The paper is not only devoted to the sampling reconstruction of signal
functions f themselves, but also of their derivatives f(*) and of the Hilbert trans-
form f~ of f, rather important in applications. Further, the function f will be
sampled not only in terms of f(k/W) but also in terms of f and its derivative f'
at 2k/W; this corresponds to Hermite-interpolation. Note that there again exist
uniqueness theorems for entire functions of exponential type that are based on
zeros of f and certain of its derivatives; see [29].

Most of the results of the paper will be provided with proofs; alternatively
proofs are sketched in a form that the reader can easily carry out himself. The
proofs have, in the course of several reworkings, been reduced to forms that are
as elementary as possible. Methods of Fourier analysis, including entire functions
of exponential type, approximation theory, including results on central B-splines,
functional analysis and, when necessary, of complex function theory and proba-
bility theory will be employed. Whereas the emphasis of the presentation is placed
upon deterministic signal and prediction theory, we will also indicate how most
of the results can be carried over into a random or stochastic setting, many signals
or error types being of random nature.

The leitmotiv of this survey paper are various types of error estimates, par-
ticularly those occurring in actual applications, foremost the aliasing error, arising
if the signal is not exactly bandlimited, also the truncation error, the amplitude
error, due to quantization, rounding or noise, and the time-jitter error. These
error-types will be investigated not only in the case of the SST and most of its
extensions but also for linear prediction.

For further survey papers on the matter we can cite those of the authors, namely
[31;32;42;168;170], as well as [118; 131; 176; 183]. The former are generally
confined to just parts of this survey. For applications of signal analysis see e.g.
the proceedings 5. Aachener Kolloquium: Mathematische Methoden in der Sig-
nalverarbeitung” listed in [72].

2 Notations and Auxiliary Results

Let N, N, Z denote the sets of all non-negative integers, all naturals, and
of all integers, respectively, and R, C the sets of all real and complex numbers,
respectively. Let C(R) be the space of all uniformly continuous and bounded
functions f: R = R (or C) endowed with the supremum norm ||-|lc. Forr € N,
one sets C(P)(R) = {f € C(R); f(") € C(R)}. Let LP(R), 1 < p < o be the space of
all measurable functions f on R for which the norm

1/p

IIfllp == \/57—7[ [f(w)Pdu (1<p<e), |fll 1=e§sesgplf(u)|

is finite. LP(a, b) denotes the space of functions that are p-th power integrable
on (a, b), and L§ that of A-periodic functions f on R that are p-th power integrable
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on (—\/2, N\/2) with the norm

(1<p<),

1 M2 0 p
IIfIILR = {X _{/2 |f(u) Pdu

The modulus of continuity of f € C(R) with respect to the difference of
order r € N is defined by

w(8;f;C(R)) := sup || X (—1)"(; f(- +kh)llc (6>0),
Ihi<s K=o

and the associated Lipschitz class of order a > 0 having Lipschitz constant L by
Lip}(a; C(R)) := {f € C(R); w.(8; f; C(R)) < L8&%, 8§ > 0}.

Furthermore, set Lip"(a; C(R)) := (J Lip}(a; C(R)). For a> r there holds
L>o0

f € Lip'(e; C(R)) iff f(t) = const. Moreover, w,(8; f; C(R)) <2w,-(8;f; C(R)),
and w(8; f; C(R)) < 8w, ;(8; f'; C(R)) for f € C(1)(R)), as well as Lip“(e; C(R))
= Lip*(e; C(R)) for 0 < @ < min {r, s}.
The index r is omitted above if r = 1. The same definitions (and results)
also apply to the spaces LP(R), 1 < p <o, and C[a, b] with obvious modifications.
For 6 2 0 and 1 < p <oolet Bf be the class of entire functions (on C) of
exponential type o (i.e., |f(z)| <exp (o|yIfllc, z = x + iy € C) which belong to
LP(R) when restricted to R (see [1; 128; 149] for definition and following facts).
One has

(2.1) BLCBECBECB; (1<p<p <),

and for any h > 0 there holds

h = Up
2.2) lifll,< Sélg W Y |f(u—hk)P <(1+ho)lIfll, (f€B5).

k =—o
Further, the following Bernstein-type inequality is needed
(2.3) IO, <olIfll, (FEBE;rEN).

If{f,} CB,, f€ L”(R) with hm fa(t) = f(t) uniformly in t € R, then f belongs
to B, too (cf. [128, p. 127]) B
The Fourier transform f” of f € L'(R) is defined by f(v) := (1/A/27) )

f(u)e™"du, the same notation being used for the Fourier transform of f € LP(R),
1 <p <2, defined by 11m W) — (14/2m) j f(u)e““’“dullq O,wherel/p+1/q=1.
If f € LP(R) N C(R) is such that f* € L! (R), then there holds the inversion formula

24) f(t)= Mdy (tER).

| =
—-\/2=1r | ' (v)e
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Also, the generalized Parseval formula will be needed, i.e.,
25 | fiwhWdu= | fiMEMdv (£, £, €L*(R)),

the bar indicating complex conjugates (cf. [41, p. 212]).
For fy, f, : R = C the convolution f * g is defined by (f * g)(t) := (1/A/2m)

- [ f,(wf,(t — u)du whenever the integral exists. If f, € L'(R), f, € L°(R),

— oo

1 <p <o orf, €C(R), then f, * f, belongs to L°(R) or C(R), respectively; for
€ LP(R), 1 < p < 2 one has additionally the convolution theorem (f; * f,)"(V)
= f;(Vf;(v) a.e. (cf. [41, pp. 5, 189, 212]). '

The classes BE, 1 < p < 2, can be characterized in terms of Fourier trans-
forms by the Paley-Wiener theorem. It states that a function f € LP(R), 1 <p <2,
has an extension to the whole complex plane C as an element of B iff " vanishes
almost everywhere outside of the interval [—o, o], i.e., iff (cf. [1, p. 134])

(2.6) f(t) = \/l— [ f'(ve™dv (tER).

As usual, in the following a function f defined on R will not be distinguished
from its unique extension to an entire function of exponential type. (A similar
characterization as above holds for p > 2 if the Fourier transform is understood
in the distributional sense.)
The finite Fourier transform (or k-th Fourier coefficient) of g € L) is

defined by

N2
2.7 [ghk) = N | gwe kmigy  (k €2),

Y

and the associated Fourier series of g € L} is given by

oo

gy~ Y [glak)eizkm/A,
K=—o

The generalized Parseval formula in this setting reads (cf. [41, p. 175])

1 A2 e Ll -
@8 3 | aedu= L [ hMleh® (2,8 €LY).
— 2 = — 0o

The connection between the L'(R)-Fourier transform f*(v) and the L}-
transform (2.7) is given by the Poisson summation formula (PSF). Indeed, if

oo

f € L1(R), then f*(t) := A\\/27) Y. f(t + Ak) belongs to L} and

k=—o0
2k7r) i2kmt/A
X .

oo

(2.9) (\A/27) i ft+N)~ Y £

k=—oo kK =—oco

If f € L'(R) is absolutely continuous with f' € L'(R), then f* is actually repre-
sented by its Fourier series, i.e., the ~ in (2.9) can be replaced by equality =
(cf. [41, pp. 201 ff.]).
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Finally, some facts concerning singular convolution integrals will be
needed. If x € LI(R) is such that x"(0) = 1, then the convolution integral of f
with x,(u) := px(pu), namely

(2.10) (IFD() = (£ * x,)(t) = 712_; § f(t—wpx(pu)du (tER)

is called a singular (convolution) integral (of Fejér’s type) on the line R with
kernel x. If f belongs to LP(R), 1 < p <o, then IXf does too, and

Q.11 Nl < lixI: 11 fllp,
(2.12) lim |I¥f—-fll,=0,

p —> ©o
i.e., {I¥}, > o defines a strong approximation process on LP’(R), 1 <p <oo. A cor-
responding result holds for C(R). If the kernel x belongs to B for some ¢ > 0 and
f € LP(R), 1 <p < oo, then I¥f € B, for each p > 0 (cf. [128, p. 136)).

A particular singular integral, that of de la Vallée Poussin (delayed means),
defined via the kernel (see [171] for the following)

4 sin (t/2) sin (3t/2)
V2 t*
(2.14) F(t) = (1/4/27) ((sin t/2)/(t/2))* (tER),

will especially be needed. Here F is Fejér’s kernel. Since 8 € B, the convolution
VP, f = If,f belongs to B}, provided f € LP(R), 1 < p < o, Concerning the approxi-
mation behaviour of VP,f one has the Jackson-type assertions

(2.15) IVPg—gllc <Mp *lg®llc (g€ CEXR); p > 0),

(2.16) IIVPg—gllc < 7o %w(p™"; £, C(R)) (g€ CEXR); p > 1).
Finally, if f € C(R) is such that

(2.17) HOI<Melt[™ ((tI=1)

for some 0 <y <1, then

(2.18) (VPO <3M¢+IIflic)ItI™” (ItI=1;0>0).

(2.13) o0(t) = =2F(2t)—F(t) (tER)

3 The Classical (Shannon) Sampling Theory

The present chapter is devoted to the most basic and widely known
properties of the Shannon sampling series. The first of its outstanding features is
that of interpolating any given function at the sample instants k/W, due to the
interpolatory property of the sinc function : sinc (k) = o, k € Z. This was actually
the motivation for its early appearence in mathematics [187; 193; 194]. The sec-
ond is of course that of representing any bandlimited function with highest fre-
quency content 7W at each time t € R; this is the basic statement of the SST
(Thm. 3.1). The third is that of approximating given signal functions not only in
the sense of convergence of partial sums with truncation index N tending to
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infinity, but also in the sense of approximating continuous functions for a band-
width parameter W that is not fixed but tends to infinity; this is the assertion of
the approximate sampling theorem (AST) for not necessarily bandlimited func-
tions (Thm. 3.8). In this case the sampling series behave essentially like their non-
discrete counterparts, namely those singular convolution integrals which are identi-
cal to truncated Fourier inversion integrals. The aspect that sampling series can be
described as discretized versions of classical convolution integrals will play a
fundamental role in what follows.

It will also be the starting point for the first proof of the SST, given in
Sec. 3.1; it uses only the commutativity of a semi-discrete convolution. Further
proofs that are carried out or indicated use tools of Fourier analysis, optimiza-
tion theory and complex analysis. The engineering procedure of sampling and
lowpass filtering leading to the SST will also be explained.

Secs. 3.2 and 3.3 deal with some (classical) amplifications of the SST,
namely with the representation of the derivative and Hilbert transform of band-
limited functions from samples of the function alone as well as with sampling
series representations in terms of samples of a function and its derivatives. Sec.
3.4 is devoted to sampling of not-necessarily bandlimited functions; this results in
the AST and the asscciated aliasing error. Sec. 3.5 is concerned with the further
main types of errors arising with sampling series representations in practical appli-
cations; these are the truncation, amplitude and time-jitter errors.

3.1 Sampling expansions of bandlimited functions

As mentioned, the fundamental property necessary for the sampling theo-
rem to hold is that the (signal) function f in question be bandlimited, thus that it
contains no frequencies higher than a certain (cut-off) frequency #W. Assuming
f € LP(R), some 1 < p < 2, this signifies in mathematical terms that the Fourier
transform f” vanishes outside of the interval [-7W, W] or, equivalently, that
f € B2\. When working with the classes BY, rather than with (non-distributional)
Fourier transforms, the restriction to 1 < p < 2 is not necessary; so f is now said
to be bandlimited to W if it belongs to B2y for some 1 < p < o, The sampling
theorem then reads

Theorem 3.1. Any fE By, 1 <p < oo, W>> 0 is representable on the
whole real line R by

- K\
3.1 fiy= Y f(v—v) sinc (Wt — k),

k=—o

the series being absolutely and uniformly convergent.

The convergence of the series in (3.1) follows from the estimate (2.2) by
Holder’s inequality. Whereas the case p = o is excluded here, as the example
f(t) = sin (wWt) shows, (3.1) does hold for f € B; if 0 < 7W; see Sec. 6.1 below.
Quite a number of proofs are known for the identity (3.1); a few of them
will be sketched in order to bring to light some specific phenomena. The first is
motivated by the convolutional structure of the sampling series. Assuming that



10 P. L. Butzer, W. Splettstofer and R. L. Stens

this semidiscrete convolution product is commutative, as is the (continuous) con-
volution f * g, an interchange of f and the sinc-function yields

3.2) i f(‘]—;-)smc (W(t—%))= i f(t—%)sinc(k)=f(t),

k=-o k=—o
the last equality following from, 8, being Kronecker’s delta,
(3.3) sinc(k)=68y, (kE2).

This often called interpolatory property of the sinc-function also shows that the
sampling series (3.1) itself interpolates f at the nodes t = k/W, k € Z, whatever
conditions are satisfied by f.

In order to make these considerations rigorous, a lemma, basic through-
out, will be needed (cf. [50; 159; 177].

Lemma 3.2. If f; € B%y, f, €EBYy, for some W>0, 1 <p <ooand
1/p+1/q=1, then

1 k k
3.4 (fl*fz)(t)=\/—7w Z fl( )fz(t"w) (tER),
K=—o0

the series converging absolutely and uniformly for all real t. In particular,

k 3 _k 5)
(3.5 k=}j_m f,(w)t}(t—-w):kzm f,(t w)fz(w (tER).

Proof. Poisson’s summation formula (2.9) applied to g € B},w with
A=1/W, t =0 yields

1 ad k
(3.6) \/ﬁk;mg(w) g0 = \/— { swdu.

Here the “~” converts to “=" in view of (2.3) and the remark following (2.9),
and the infinite series on the right of (2.9) reduces to the term for k = O since
g'(v) =0, all |v| = 27W. Now apply (3.6) to f,(-)g(t — -) € Bi,w to deduce (3.4);
the convergence assertions again follow by (2.2). The commutativity (3.5) is a
result of that of the integral f, * f,.

An application of (3.5) to f; = f and f,(-) = sinc (W -) justifies the left-
hand equality in (3.2) and so completes the proof of Thm. 3.1.

Note that La. 3.2 shows that the convolution integral f, * f, of two band-
limited functions can be replaced by a discrete version, the convolution sum of
(3.4); it is nothing but a Riemann sum of the convolution integral with nodes
k/W. In particular, the sampling series in (3.1) is the discretization of the con-
volution of f with the sinc-function (also known as Dirichlet’s kernel on the line)
which in turn is an alternative form of the Fourier inversion integral (2.6) as fol-
lows from Parseval’s formula (2.5); see (1.5) in this respect.

Such discretizations of convolution integrals will play a fundamental role
in this survey — not only the structure but also the approximation behaviour of
convolution integrals will be carried over to discrete convolution sums, whenever
possible.
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In text-books on communication theory (see e.g. [ 109, pp. 44f.]), one
usually starts with the output of an ideal sampler in form of a series of weighted
delta pulses

k
B f(t)= E,. f(w)8(t w)'
The Fourier transform of this sampled time function then results in a periodic
repetition of the Fourier spectrum of f. An ideal low-pass filter is used to cut out
one period of it so that the inverse Fourier transform in terms of the convolution
of the distribution (3.7) and sinc (Wt) yields the representation of f by its sam-
pling series. Note that this is a description of the operation of an ideal sampler,
S-functions being used as a tool. For the sampling theorem in a distributional set-
ting see [57; 1341].

For the following proofs, all of which use Fourier analytlc tools, the mat-
ter has to be restricted to 1 <p < 2, i.e., one can assume f € B2y, in view of (2.1).

The idea of extending a functlon periodically in the transformed domain
is also fundamental in the following proof based upon the generalized Parseval
formula (2.8). Denoting the 2nW-periodic extensions of f*and ™™ from [-7W, 7W)
to R by g, and g,, respectively, then these extended functions belong to L2,w, and
one has by (2.7) and (2.6) that fork € Z

l W k
(3.8) [gl];nW(k) 2 W _[ £ (v)e lkv/v'ldv_\/——‘w ( —) ’

—-7W
W

[ & ivto—ikv/W 3y = sinc (Wt +'k)-

3.9 [g:law(k) = ) W
—-nW

Hence Parseval’s formula (2.8) gives

l W 1 oo k)
ivt = J— 3
Z”W_wa(v)e dv= T k=z_m f( W sinc (Wt + k)

which is (3.1), noting (2.6). See e.g. [179].

In the foregoing proof the theory of Fourier series with respect to the
2nW-periodical orthogonal system {e¢~*¥/W } was applied to f". The next proof
reveals that it is also possible to regard the sampling series as a Fourier series
with respect to the orthogonal system {v/W sinc (Wt —k)}y < z.

Indeed, observing that

. ! e kW oy < W
(3.10) sinc (W - —K)'(v) = | V/2aW

o, lv]> 7W,

formula (2. 5) yields that {+/W sinc (Wt — k)} < z is a complete orthonormal
system in B,,w (in the L2(R)-metnc cf. e.g. [32; 91]). Furthermore, the asso-
ciated Fourier coefficients of f € B2y are given by, using (2. S) again,

11 i - = —
(3.11) VW __fm f(u) sinc (Wu —k)du = \/W

ikv/W 1 (i)
\/_w_ j £ (w)e*™V dy fl] -
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So the (general) theory of orthogonal expansions in Hilbert spaces can be em-
ployed, B2y, being such a space, to give

. N k
(3.12) lim [f(-) = > f(W

k=—N

sinc (W - —k)ll,=0.

Since the series in (3.12) is uniformly convergent, as seen, (3.12) also holds for
the sup-norm; so one has again (3.1). It further follows that the series in (3.1 2)

N
gives the best approximation to f among all “polynomials” Y v sinc (Wt —k)
k=—N

in the metric of L?(R). So the sampling series results too from a certain minimum
problem, the functions+/W sinc (Wt — k) being given and the coefficients 7,
having to be optimized.

We shall now show that one can come by the sampling theorem also from
an alternative minimum problem, namely the coefficients f(k/W) are now given
and the functions s, (t, W) have to be determined that minimize ([170])

- ¥ f(k)sk(t W)'

dn(sy) i= sup
Ifllg < k=-N

Using the inversion formula (2.6), and the representation theorem for linear func-
tionals on the Hilbert space L2, v,

1 N .
d = su = f hvWe (t, W ] '
n(s) ey _{w (V)[ k=Z—N e" Vs (t, W)
N
=4/27W Y e® Mg (t, W)
k=—N Lypw

Now since {e*"V}, czisa complete orthogonal system in L3,w, dy(sy) is mini-
mized and tends to zero for N - oo if the s, (t, W) are chosen to be the Fourier
coefficients of the 2nW-periodic extension of e'*'. But these coefficients are given
by sinc (Wt — k) because of (3.10). This shows that the truncated sampling series
solves the latter minimum problem and again that the representation (3.1) holds.

Let us mention that a further, entirely different proof of Theorem 3.1 is
known; it employs contour integration in the complex plane (see e.g. [43; 94;
188; 196]). This approach even allows one to establish (3.1) for f € B, provided
o < 7W. See again Sec. 6.1.

There exists another representation formula for bandlimited functions,
the Valiron interpolation series, namely (cf. [11, p. 221; 149, p. 137; 171])

f(t) = (tf'(0) + £f(0)) sinc (W) + Y’ f

k=—o

k| Wt
—_ — a1 — E
W) " sinc((Wt—k) (t€R),
the prime indicating that the term k = 0 is missing. This formula, which is valid
under even weaker assumptions upon f, e.g. f € B,w, can be deduced by an appli-
cation of (3.1) to (f(t) — f(0))/t. The advantage here is that the additional factor
Wt/k increases the speed of convergence of the partial sums of this infinite series.
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3.2 Sampling representations of derivatives and Hilbert transforms

In this section we present some amplifications of Thm. 3.1 in order to
deduce sampling series expansions of derivatives f(*) and the Hilbert transform
f~ in terms of samples of f only. If f € BPy, then its derivatives f(*) belong to B2y,
too so that they can be reconstructed from their sampled values f(*)(k/W) directly
by Thm. 3.1. However, if only samples of f itself are allowed, we have (cf. [45;176])

Theorem 3.3. If f E By, 1 <p <o, W> 0and r € Ny, the representation

= k\/d\
3.13) £ = f(—) (—) inc (Wt —k
(3.13) £t k:Z_m w1 \gg) sinc( )

holds uniformly for t € R.

Regarding the proof, term-by-term differentiation follows from (3.1) if
the series in (3.13) is uniformly convergent. But this is so by (2.2) and Hoélder’s
inequality.

Some further representations of ® hold; they follow by reason of the
commutativity (3.5) of the series in (3.13). Thus for r = 1 one has, for example,

Corollary 3.4. For any f € BEy,, 1 <p <oo, W > 0 there holds, uniformly
int€R,

cos m(Wt — k) _ sin m(Wt — k)

3.1 f'(t)=7W i f(~k~

Keow W (Wt —k) (@(Wt—k))? |~
, 3 °°I l(- (_1)k+lw
(3.15) f(t)_k;_m f(t+w K >

e 3 2k +1) CDM4W
3.16) ()= X f(“ W )(2k+1)21r'

k=—o0

Indeed, (3.14) is exactly (3.13) for r = 1, and the form (3.15) (see
[45; 179]) follows from (3.14) by (3.5). An application of (3.14) with t =—(1/2)W
to f(x + -) yields formula (3.16), due to Boas [11, p. 221], after replacing x by
t+1/2W.

Concerning the Hilbert transform f~, defined for f € LP°(R), 1 <p <oo by
(cf. [41, p. 310D)

(3.17) £7() = lim Ly vy,

~>o+7r|u|>5 u

>

we proceed as follows. If f € Bfy,, 1 <p <o, then f~ exists as a continuous func-
tion on R and f~ =+/27W(f * sinc™), the latter following in view of the identities
f*sinc=fand (f*sinc™) * 6, = (f * sinc) * 6, =~ * 0, for p = o0, 6, being

de la Vallée Poussin’s kernel (2.13) (cf. [41, p. 145; 185, p. 318]. Applying (3.4)
and (3.5) to this representation of £~ yields
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Theorem 3.5. If f EBEy, 1 <p <oo, W >0, then, uniformly for t €R,

(_15) 1 — cos mM(Wt—k)
w (Wt — k) ’

(3.18) f7 ()= i f

k=—o

t+2k+l) -2
W /(2k+Dr’

3.19) f (1= i f

k =—o0

Observe that the series in (3.19) is a discrete form, or Riemann sum of the
integral in (3.17) defining f~, whereas that in (3.18) is a discretization of the con-
volution\/27W(f * sinc”).

Derivatives of the Hilbert transform could likewise be treated and deduced
by termwise differentiation of the series in (3.18).

Theorems 3.3 and 3.4 for 1 < p < 2 could also be established by the
approach based upon Parseval’s formula of Sec. 3.1; see [179].

3.3 Reduction of the sampling rate; derivative samipling

In applications one usually tries to keep the sampling rate as low as pos-
sible. The Fourier theory approach or the minimization technique at the end of
Sec. 3.1 reveals that the sample instants k/W result from the same fraction in the
argument of the orthogonal functions exp {iv(k/W)} needed for the 2aW-periodic
expansion of f" into a Fourier series. Thus to reduce the sampling rate, e.g. to
samples at 2k/W, double the distance apart as before, one could try to find a way
of using exp {iv(2k/W)}, i.e. ¥W-periodic ones. Indeed, this is what lies behind the
following sampling expansion, often called derivative sampling or simultaneous
sampling of the function and its derivative.

Theorem 3.5. a) For f € B2y, one has, uniformly in t €R,

+ ( 2k ) ¢ (2k)
Cwtw

Although the inclusion of samples of the derivative f' thus allows one to
double the distance between two consecutive sample points, the mean number of
sampled values on finite intervals is the same as for Thm. 3.1 since two functions
have now to be sampled at each instant. This fact was already touched upon in
Shannon’s paper [152].

For a proof of Thm. 3.5a) see [45; 108] where also results are given on
sampling expansions using all derivatives up to a certain order R — 1, thereby the
sample distance being enlarged to R/W. Whatever the nature of f, the series (3.20)
still interpolates f at the nodes 2k/W and, even more, the termwise differentiated
series interpolates f' there; this means that it is of Hermite’s type in the language
of interpolation theory.

In order to explain how to construct sampling expansions of type (3.20)
that use even linear operations other than derivatives, let us present a general
method from [131; 188]. Assume that there are n linear transformations
A;,j=1,...,nof f €Bly given by

sinc

= 2k 1 2
(3.20) f(ty= Y. f(—- 5(Wt—2k)) .

Lo w
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S S i
ADO="5= | FOaWe"dr (ER),

with a; € L™ [-7W, 7W]. Further let there exist a set of 2rW/n-periodic functions
{g}j=. C Li,,w,,, such that ™ = Y a;(v)e;(v) for almost all v € [-7W, 7W].

ji=1
Then one obtains (using e.g. the minimization technique of Sec. 3.1) the sampling
expansion

- .
@G2D) (= ¥ T KD (—v:,—‘)

k=—o j=1

Examples can be constructed by solving the system of equations (time-consuming),
on (—7W, =W + 2aW/n),

gl(v + 2mmW/mt — a(v+2mmW/n)e;(v) (m=0,...,n—1).
i=1

If A, is the identity operator, A, the Hilbert transform, the following result
can be deduced in the foregoing way.

Theorem 3.5. b) For f € B2y, one has, uniformly in t €R,

oo

f(t) = Z {cos

kK =—oo
~ 2k
f (W)

For a detailed evaluation of another example, also involving shift opera-
tors, see [188].

w

%(Wt—Zk)]f(z—k +(=D**!sin [g (Wt—2k)]

1
sinc 5 (Wt — 2k).

3.4 Approximation of non-bandlimited functions by their sampling series;
aliasing error

Bandlimitation is a rather severe mathematical restriction since, due to the
Paley-Wiener theorem, any bandlimited function possesses an extension as an
entire function to the whole complex plane. This implies e.g. that such functions
cannot vanish on an interval unless they are zero everywhere. So there do not
exist signal functions which are simultaneously bandlimited and time-limited
(i.e. of finite duration), a fact which causes complications in engineering applica-
tions since both limitations are rather natural for real physical signals [156]. The
gap between theory and practice will be bridged by considering functions which
are approximately bandlimited or, on the basis of a given level of accuracy,
behave like bandlimited ones. In regard to the sampling theorem this will mean
that the series of (3.1) will not be equal to f(t) (as in Thm. 3.1), but that it will
tend to f(t) for W = oo, namely,

(3.22) f(t)= lim ) f('E') sinc (Wt — k).
W oo = w

— o0
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Thus the point will be to choose the bandwidth parameter W so large that the error

(3.23) (RyHH)(t) :=1(t) — i f(wk-) sinc(Wt—k) (t€ER)

K=—o0

becomes sufficiently small. Much work has been done to establish bounds on this
socalled aliasing error (3.23), thus arising if functions that are not exactly band-
limited are tried to be reconstructed by their sampling series.

De la Vallée Poussin [ 187] was the first to deal with the representation
(3.22) and error (3.23) when he employed sampling sums for the interpolation
and approximation of time-limited functions. His result reads

Theorem 3.6. If f is of bounded variation on some finite interval (a, b),
zero outside, and continuous at ty € (a, b), then (3.22) holds for t = t,.

This pointwise convergence assertion can also be given in terms of moduli
of continuity (instead of variational properties). In fact,

Theorem 3.7. If f is bounded and Riemann integrable on [a, b), zero out-
side, and satisfies

1
(3.24) hlim w(h;f;C[tO—ﬁ,t0+8])logH=O
- 0+

for some ty € (a, b) and & > 0, then (3.22) again holds for t = t,.

For infinite interval versions of Thms. 3.6 and 3.7 see [140].
Noting that (3.22) is just a discretization of the Fourier inversion formula
written in terms of Dirichlet’s kernel, namely

W L
(3.25) f(t)= “}i_rpw ﬁ_ Jw £ (v)e™dv = wli_rpm W_L f(u) sinc (W(t —u))du,
one observes that whereas the assumption of Thm. 3.6 corresponds to Jordan’s
condition for the validity of (3.25) in Fourier analysis, (3.24) is known there as a
Dini-Lipschitz condition [200, Vol. I, pp. 57, 63, Vol. II, p. 242; 88 p. 45]. It
will be seen below that there are other sufficient conditions for (3.22) to hold;
all have well known counterparts in the theory of Fourier integrals. In particular,
there are also results corresponding to the localization principle of Fourier
integrals, roughly stating that (Swf)(ts) and (Swg)(te) have the same behaviour
for W = oo if f and g coincide in an arbitrarily small neighbourhood of t, (cf. [140]).
If, however, f is not continuous at ty but has a finite jump there, one
might expect that, similarly as for Fourier inversion integrals, the sampling series
(Swf)(te) would tend to the mean value 1/2(f(to+) + f(t,—)). However, already
de la Vallée Poussin [187] showed that in this case (Sy f)(t,) diverges for W — oo;
more precisely, for each y between f(t, +) and f(t,—) and each € > O there exist
infinitely many W > 0 such that |(Sw)(ty) — vl <e.
Some sixty years after the above work did one again treat bounds on the
aliasing error (3.23) (cf. [173; 181; 20; 21; 22; 100]). The theorem below yields
at the same time the desired extension of Thm. 3.1 to the situation of not neces-
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sarily bandlimited functions. It will also be referred to as the approximate sam-
pling theorem (AST).

Theorem 3.8. If f € L>(R) N C(R) and f* € L'(R), then for the error
(3.23) one has

(2k + 1)7W .
(3-26) (Rw f)(t) = — Z (l ‘le‘IttW) j‘ f"(v)elvtdv’

Mg=—o 2k —1)nW
2 .

327 IRwfle< /= If'(Wldv.
m Ivi> W

In particular, (3.22) holds uniformly for t € R.

The proof is a slight modification of that of Boas [11], based upon Pois-
son’s formula (2.9). First define the 2n#W-periodic function

(3.28) F*W=v/W Y f'(Q2aWk—v),

k=—o

the series being dominatedly convergent on each compact interval. In view of (2.9)
and (2.4) F* has the Fourier series expansion

(3.29) F*(v) ~

k=—0o

Since a Fourier series can be integrated term-by-term, also after being first mul-
tiplied by a function ¢~™* of bounded variation ([200, Vol. I, p. 160]), we obtain
from (3.28) for each t € R,

W
(3.30) Word § F*(w)e ™Mdv = f(t) — (Rwi)(Y),

W

noting (3.9). Replacing now F* by its series (3.29) and f by its Fourier inversion
integral (2.4), then
1 t - i2kmtw (k+ W ivt
£ (v)etdv — e KT £ (v)eVdv
\/2 j Kk 2‘» (2k—jl)1rW

Splitting off the first integral in the form

(Rwf)(t) =

o (2k + 1)aW »
31D f(t)=— f*(weMdv (tER

(3.31) f(t) \/—k_z_mak]l)"w W ( )
leads to the desired representation (3.26) for the error (3.23). The estimate (3.27)
is obvious.

Further, if f would be bandlimited, i.e. f € B2y, the bound in (3.27) van-
ishes (no overlapping in the periodic repetition of the Fourier spectrum in (3.28)),
and we have another proof of the classical Theorem 3.1. Note that the error bound
in (3.27) is best possible as an example in [20] shows.

In order to apply the estimate (3.27) one needs to know the behaviour of
the Fourier transform outside the band [-7W, #W]. As is well-known, the smooth-
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ness of a function f influences the rate of decay for v = *o of its transform f".
This fact was used in [45; 46] to deduce the rate of convergence of Rw f for

W — oo in terms of differentiability properties and Lipschitz conditions upon f.
Although this method leads to estimates which are best possible in a certain sense
(cf. [180)), it works only in case f is such that f' € L(R).

In order to establish orders of approximation for not necessarily differen-
tiable functions a different method is to be recommended. This method, first
applied in [158] and in an improved form in [160; 171; 180] makes use of the
approximation of a non-bandlimited f by a suitable bandlimited function (pre-
filtering in engineering terms) together with a comparison of the sampling series
of the latter with that of f. It results in the following

Theorem 3.9. Let f € C(R) satisfy condition (2.13) for some 0 <y <1.If
(9 € Lipy (o; C(R)), 0 <a < 1, r € Ny, then
(3.32) lRwfllc <K (f,r,a, )W " *logW
provided W 2 exp {2/(r + a. + )}, with constant K, given in (3.35).

For the proof consider the de la Vallée Poussin means (see [31; 32]),

defined in Sec. 2. For p = W/2 these means are bandlimited to [-7#W, #W] and
satisfy the assumptions of Theorem 3.1. So the aliasing error converts into

(Rw)(1) = f(t) — (VP,£)(D)

oo

+ ¥ {(vppf)(%) - f(%

k=—o

sinc (Wt — k) =: I,(t) + L,(1),

say. Since [|f = VP flic < c,;W™ "% for W > 1 with ¢, := 7L(2/m)"* %, it remains to
show that [|L;llc = O(W™""*1og W). In this regard Holder’s inequality for g > 1,
1/p +1/q =1 yields

oo

1/ o
llz(t)|<[ ) IsinC(Wt—k)Iq} : > ’(Vpr)(%)—f(E)

p}l/p
K oo K W

Now the first factor on the right can be estimated by {1 + (2/m)%/(q — 1)}/

< p'2 < p for each W > 0 (see [171] for a proof using the 1/W-periodicity of the
first factor and an integral estimate). The second factor is split up into a finite
part of 2N + 1 terms

N VP £ E ¢ E P)1/p <c,(N + 1)1/pw—-r—a
(3.33) [k:L:N (VP, )(W W <
which were estimated on the basis of (2.12) plus an infinite remainder
k k\[P) P k|~®)p
3.34) [ (VP,f) (—)—f(— ] <c { Y = l
( Ik|§N N/ w G k>n | W

<2 i/po)wv N-p7)/p

with ¢, = 4Ms + 3| fllc, estimated by means of the property (2.13) which lead to
(2.14) for the de la Vallée Poussin means of f. Now the parameters N and p have
to be chosen suitably. Indeed, for N := [W!'*¢*®7 4+ 11> 2 and
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p:=((r + « +v)/y) log W one calculates
(2N + 1)1/9 < 51/P(Wl +(r+a)/f)l/p = 51/pe,

and for py = 2, which is equivalent to W = exp (2/(r + a + 7)),
WINU—PO/P W mrm NP < oM Pew T2,

Putting the above estimates together one finally obtains

c r+a+y)(5Yec; 2*Pec,
(3.35) ||wa||c<w,ia+( : ) e+ i | log W
+ao+ log W
<(r—a—l) (%+57/2e)-01+27602 w_gr+_a

provided W = exp {2/(r + a + v)}.

In the above evaluations the constant K, was calculated, following [31],
as sharply as possible under the least investment. In earlier work the constants
could not be given explicitly, the Riesz means being used instead of the VP,-
means. The estimate (3.32) cannot be improved in regard to the order (see [33]).

It is also interesting to remark that there exist counterparts of Theorems
3.3, 3.5 and Corollary 3.4 on the approximation of f(*) or f~ for the case of not
necessarily bandlimited functions. See [45; 179; 180].

Let us finally emphasize that since the class of not necessarily bandlimited
includes the class of duration-limited functions, all the results established so far
(as well as those of Sec. 3.5) hold in particular for the latter class, one which is
rather important in practice. See e.g. [30; 33; 46; 178].

3.5 Further error estimates: truncation, amplitude and time-jitter errors

There are further types of errors which might influence the accuracy of
the reconstruction of a function from its sampled values. Besides the aliasing error
Rwf treated, arising if the function is not exactly bandlimited or the bandwith is
larger than assumed, there are in addition

(i) the truncation error Tnf, arising if only a finite number of samples is
taken into account;

(ii) the amplitude error Af, arising if the exact sampled values f(k/W) are
not at one’s disposal but only falsified values f(k/W), differing from the correct
values by not more than €; this falsification may be due to quantization, rounding-
off or noise;

(iii) the time-jitter error Jf, arising if the sample instants are not met cor-
rectly but might differ from the exact ones by not more than a given 8.

For error problems in general see [130; 183; 48].

The first of the errors, the truncation error, which occurs naturally in
applications, has been studied rather intensively in engineering literature (see e.g.
[23;59; 136; 197]). In the case of bandlimited functions f € By, 1 <p <o,
which will be considered first in this section, the error Tyf, given by

(3.36) (TnDX(D) := ) f(%) sinc (Wt — k),
Ikl> N
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can be controlled by any condition on f leading to a rate of decay |f(k/W)|
=0(lk|™®, |k| > oo, 32 1. The most common estimate for (3.36) seems to be
that of Jagerman [93] who required that f(t) and t"f(t) (moments) belong to the
Hilbert space L%(R). Then an application of Parseval’s formula (2.5) yields
I(TnE)(t)| = O(N™""'2) for each t with |t| < N/W. If one renounces Hilbert space
methods it was shown in [38] (compare also [145]) that

Theorem 3.10. If f € BLy, with (f)(D e Lipy (o; C(R)), 0 <a < 1, then
one has the pointwise rate

(3.37) ITnf(t)l=O(N"""%),
for Nsuch that N+ 12W[t]/§>0,0<¢t<1and N=r>0.

The truncation error can also be treated for functions the Fourier trans-
form of which possess an r-th derivative that is of bounded variation on [-7W, W],
as well as for functions which themselves have a derivative with a given rate of
decay; see [38].

The second error type, the amplitude error, is usually dealt with by sto-
chastic methods, particularly when interpreted as some sort of “noise” or distor-
tion, see e.g. [74; 143]. The situation is quite different if this error results from
rounding-off or quantization, i.e., the sampled values are replaced by the nearest
discrete values. In this case the quantization size is known beforehand or can be
chosen arbitrarily, and therefore it is preferable to handle it by deterministic
methods. In the latter case one can proceed similarly as for the aliasing error
dealt with in Sec. 3.4. B

Assume that the quantized values f(k/W) differ from the exact f(k/W) by
the local errors €, := f(k/W) — f(k/W), these being uniformly bounded, |, | <€
for k € Z, where € is half the difference between two consecutive quantization
steps 2je and 2(j + 1)e. Note that this implies that |e, | < |f(k/W)|, k € Z. For the
total quantization error

oo

sinc(Wt—k)= Y ¢ sinc(Wt—k)

k=—o0

- £ [l
(3.38) (AWM = Y W v

kK =—o0

we then have the following result (cf. [32; 48])

Theorem 3.11. If f € By satisfies condition (2.17) for some 0 < y<1,
then

(3.39) A fllc <$ (V3e +/2Mge'*)e log (1/e€)

forW=1,e<min{1/W,e Y2},

The proof of this estimate is based upon

oo

l/q bt 1/p
[(ADMI<{ X Isim:(Wt—k)I“} |Z Iekl"‘ )

k=—o0 k =—o

valid for 1/p + 1/q =1, p > 1 by Holder’s inequality. The first factor was already
found to be bounded by p (see proof of Theorem 3.9); the second will be divided
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into a finite part of 2N + 1 terms plus an infinite remainder. The proof then fol-
lows along the lines of that of Theorem 3.9, noting (2.17) and that |ex| < | f(k/W)I.
A suitable choice for N would be N := [e"VYWPY/®Y= D] with p = (4/7) log (1/e).

If one would wish to establish mere convergence of A f towards zero for
€ > 0+, one can fix p to be p = 1/2, use the identity (compare (2.8))

15 f(E) LT rmkdy (f€Bhy)
W, 2o | W T aw i ™

instead of condition (2.17), and choose N = [1/e]. For the details throughout see
[32].

The third error, time-jitter, is rather similar to the amplitude error in
regard to treatment. The local errors now result from taking the samples not at
the right time instants k/W but at k/W + §,, so that the total error, the jitter error,
is given by

% + Sk) sinc (Wt — k).
Jitter error is often considered as a random distortion with stochastic methods
being used — the &, being regarded as a weak sense stationary discrete - param-
eter random process having finite variance (see e.g. [4; 28; 155]). However, it is
also convenient to look at the problem from a deterministic point of view, par-
ticularly when it is apriori known that the sample points cannot be spaced equi-
distantly. (For error-free sampling representations based on non-equidistantly
distributed sample times see Sec. 6.3.) It is based on the sole assumption that the
local deviations 8, have an upper bound &, i.e. |8y | < fork € Z.

Following the same approach as for Theorem 3.11, where the local dif-
ferences f(k/W) — f(k/W + 8,) are now estimated by &|/f'lc, one can prove the fol-
lowing result (see [32]).

Theorem 3.11. If f € B, satisfies condition (2.17) for some 0 <~y <1,

ol k
D)D) = 3 [f(\—y—) ¢

k=—oo

then
4 1
(3.40) 1J5fllc < 5 “Sellf'llc +v/8Mge'*)8 log 5

provided 8 <min {W™', 11/e}, W= 1.

In practice, the above error types often occur together, particularly in the
case of not necessarily bandlimited functions, thus in the instance of the AST
(Thm. 3.8). In order that the corresponding results are more applicable it is use-
ful to combine these errors in dependence upon one parameter only; for simul-
taneous truncation error Ty f and the aliasing error Ry f of Thm. 3.9 see also
[56;92; 1711, for amplitude error A.f and aliasing [48], or jitter error Jsf and
aliasing [48]. See expecially [32] for the details. Here let us see how to establish
a bound for the combination of all four errors considered, namely for the com-
bined error

N
CcHm:=f- Y f(vkv + 8y | sinc (Wt — k).
k =—N
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This means one deals with the problem of approximating not-necessarily band-
limited functions by truncated sampling series with quantized sampled values
taken even at jittered time instants. Our new result reads

Theorem 3.12. Let f € C'(R) satisfy condition (2.17) for some 0 <y < 1.
For each W with log W = 2 there holds

ICfllc <Kz(f, 7, p1, p2)W ! logW

provided N=[W'*1"+ 1] e= P1/W, 8 = p,/W, where K, is the constant given by
(3.41).

Note that the proportionality constants p,, p, are introduced so that the
choice of €, § is more flexible.

In order to utilize the calculations already carried out let us divide the
error term as follows

N
(COH) = () — (VPO + Y
k=-N

k k] .
(VP,,f)(W) —f(WH sinc (Wt — k)

N

k N k k
+ (VP,f) —) sinc(Wt—k)+ Y [f(—)—f(—+5 ) sinc (Wt—k)
Ik|>zN ? W k=-N w W .
N _[k )
+k=z_N [f W"‘Bk _f(W'{"ak) SlnC(Wt_k)

for p = 7W/2. As in the proof of Theorem 3.9 we deduce, using Hélder’s inequality
with 1/p+1/q=1,p>1,

hnd 1/q
ICfllc <NIf—VP,lic+{ Y Isinc (Wt—k)|®
k=—o
N k QU LARY: k\|P)ip
(VP f)(— —f(—) + Y [cvp f)(—) ]
L:Z—N P\wW w IkI> N e\
[ N k k p)1/p N k 1k p)1/p
=|-fl=+ + =+ 6|~ f|+8

* k=Z—N f(w) f(w ak) k=Z—N fw k Wk ]

Denoting the four errors in the square brackets by S, . . ., S,, the first, S,,is
estimated as in (3.33) now with r + a = 1, the second, S,, as in (3.34) with con-
stant ¢, replaced by 3(M¢+ |/ fllc). The summands in S; are estimated by
[f(k/W) — f(k/W + 8,)| < 8[| f’llc; those of S, are bounded by €, noting that

k ~(k
bounded by p, one has on account of (2.16) for log W =2, N =[W'* /7 + 1],
andp=(1+1/y)logW,

< e. Since the factor before the square brackets is

14 ' l 7?2 E_ ' ’
l|Cf||c<1rW IHlle + (1 +’y log W|5"% W e+ olfl +e
2% -3
+ W (Mr"‘“f"c)”-
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Choosing € and & in dependence on W as in the statement of the theorem and col-
lecting constants, this yields

1 14 7 ,
(3.41) |ICfllc < 1+; \/ge[(—;+p2+—‘1r3\/5—)|lfl|c+px
log W
+ 6e(M; + lIfllc) °§V ,

establishing the assertion.

Assuming a given level of accuracy, one can calculate, on the basis of
Thm. 3.12, the cut-off frequency parameter W (or determine the sampling rate
1/W) and find simultaneously the minimal number of samples that need be taken
into account as well as a bound for the height of the quantization steps and the
deviations §; allowed.

4 Generalized Sampling Series

In the present chapter generalizations of the Shannon sampling series will
be considered; they are especially suitable for non-bandlimited functions. These
generalized series will turn out to be discrete analogs of singular convolution
integrals on R; the classical series was observed to be the discrete-time version of
the Dirichlet convolution integral on R (cf. (1.5)).

There are several reasons which motivate the following generalizations.
Although the classical SST is of great theoretical interest, both in signal analysis
and mathematical analysis, it can hardly be carried out with all precision in the
various applications. Firstly, only a finite number N of sampled values can be
used in practice so that the representation of a signal f by the finite sums is pro-
vided with a truncation error which decreases rather slowly for N — oo since the
sinc-function involved behaves only like O(|t|™!) for [t| = . In this respect
I. J. Schoenberg in his famous paper of 1946 [147] stated:” . . . its [the series]
excessively slow rate of dumping, for increasing t, makes the classical cardinal
series inadequate for numerical purposes”.

Secondly, when dealing with non-bandlimited functions, which lies near
because of the non-conformity of time and band-limitation, the Shannon series
are not too appropriate. The reason is that the approximation of f by the Shan-
non series (3.1) for W = o only holds under more or less restrictive conditions
upon f. Continuity of f alone does not suffice. Thirdly, the convergence of the
Shannon series to f is stronlgy influenced by the various errors which may occur
in practice; recall Sec. 3. Finally, the sinc-kernel itself is not very suitable for fast
and efficient computations. In this respect note that an ideal low-pass is not
realizable in practical applications; see [36].

These four difficulties will be overcome by replacing the sinc-function by
so-called kernel functions p. Apart from choosing well-known kernels occurring
in approximation theory, such as those of Fejér and de la Vallée Poussin, ¢ will be
chosen as certain polynomial splines. The latter have compact support so that the
associated generalized sampling series even reduce to finite sums. Furthermore,
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these sums can easily be computed by using the very efficient and stable algorithms
known for splines; see [17; 150, Chap. 5].

Sec. 4.1 deals with the convergence to f of sampling series constructed via
p-kernels, Sec. 4.2 with the rate of this convergence in the case of bandlimited o,
whereas Sec. 4.3 is concerned with the same matter for non-bandlimited ¢, so in
particular for the spline kernels mentioned. Sec. 4.4 is devoted to the approxima-
tion of derivatives f*) by derivatives of the generalized sampling series.

4.1 General convergence theorems

According to the foregoing introduction it is of particular importance to
study sampling series of the form

1 - k
4.1) (SEH) = > }_:m f(w)w(Wt k),
where the sinc-function has now been replaced by an arbitrary kemel p, and then
to ask for conditions upon ¢ such that most of the disadvantages mentioned above
do not hold for this new series. In particular, the generalized sampling series (4.1)
should exist for each uniformly continuous and bounded function f, and converge
uniformly to f(t) for W > oo ie.,

4.2) f(t)= Wli_r:noe S&OH() (FECR);tER).

Before carrying out these investigations let us recall that the approximate
sampling representation (3.22) is the discrete analog of the Fourier inversion
formula in the form (3.25).

If one replaces, however, the sinc-function in the rightmost integral of

(3.25) by an arbitrary ¢ € L'(R) with ¢"(0) = (1/7/27) | @(u)du= 1, then

w
4. f(t)= lim — fi W(t—u))d feC(R);t<ER
(4.3) f(1) winm\/ﬁ_jm (WeW(t—uw)du ( (R); ),
the convergence being uniform in t € R (see e.g. [41, p. 121]). The integral in
(4.3) is a convolution integral with the Fejér-type kernel Wp(Wt), so that (4.2)
may be regarded as a discrete form of (4.3). See also [13].

Now it is easy to see that the conditions ¢ € L'(R) with 9 (0)=1 or

(/21 | o(t—uwdu= 1, t €R, are not sufficient for (4.2) to hold. Take e.g.,

o(t) =27 (2—41t]) for [t| < 1/2,= 0 for |t| > 1/2, and f(t) = 1. Although
¢"(0) = 1, (4.2) fails e.g. for t = 0. In other words, the assumptions needed upon ¢
such that (4.2) holds have to be stronger than or at least different from those for
p satisfying (4.3).

Now to our first result concerning the convergence assertion (4.2); see
[141] for this material. The absolute (sum-)moment of ¢ of order r € N, will be
defined by

oo

-= 1 — T —
m, () : tsgg—ﬁkz It— k[ lo(t = k).

= -0
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Note that m,(y) < oo implies (1/4/2m) I lulflp(u)|du < o; in particular my(yp)
< oo gives p € L(R).
Theorem 4.1. Let ¢ € C(R) be such that

oo

1
4.4 E ) _Z

the absolute convergence being uniform on compact intervals of R, and

lp(t— k)| <o (tER),

(4.5) \/__ 2 p(t—k)=1 (tER).
k=

a) If f : R~ Cis bounded on R, then there holds (4.2) at each point
t = to € R where f is continuous.

b) {S% }w > o defines a family of bounded linear operators from C(R)
into itself, satisfying
(4.6) NISHllic,c1=mo(p) (W>0),

4.7 Wlim ISGf—fllc=0 (f€C(R)).

Concerning the proof, noting (4.5) and the continuity of f at t,, one can
estimate

i k
I£(to) — (SGE)(to)] = l\/—— o [f(t)—f(W)]cp(Wt—k)l

—= k
+ - -_— —
V IWt— kz|:<5w wt _§>5w If(t) f(w)' [@(Wt—Kk)I

2
<emd@+v/tﬁﬂk X leWt—K)l.
m Wt —k| > 86W

Now the latter term can be shown to tend to zero for W = o0 in view of (4.4) (see
[141]). Assertion (4.6) is obvious, and (4.7) follows similarly to a).

In practice it may be difficult to decide whether a given y satisfies (4.5)
or not. The following lemma (case j = 0, ¢ = 1) is useful in this respect.

Lemma 4.2. Let ¢ € C(R) be such that m(p) < oo for some r € Ny, and
let j € Ny with j < r. The following assertions are equivalent for c € R:

oo

1 .
® Ekz t-k’p(t-k)=c (tER),

(-die, k=0
0, k € Z\{0}.

According to Poisson’s summation formula (2.9),

() (¢ 1(2km) =

oo Py

\/% Z (t— k)jtp(t -k) ~ (—i)_j Z [‘p‘](j)(zkﬂ.)enkm’
k

=—o k=—oo
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m;(¢) < o0 implying the existence of the derivatives [¢"]" (see [41, p. 197]). Now,
if (i) holds, then the Fourier series (of the 1-periodic function on left) reduces to
the term for k = 0, which must be equal to c; thus (ii) follows. Conversely, if (ii)
holds, then the Fourier series represents the function on the left, i.e., (i) results.

Conditions of type (i), (ii) are also to be found in connection with con-
vergence and stability results for finite element approximation; see [76; 2, pp. 12,
131; 60].

Now it is easy to give examples of kernels satisfying (ii) of La. 4.2, hence
the assumptions of Thm. 4.1 so that the convergence assertions of part a) and
(4.7) holds for them. First consider bandlimited kernels, i.e. ¢ € B}, with ¢"(0) = 1.
It follows from (2.2) that the series in (4.4) for such ¢ does indeed converge uni-
formly on compact intervals, and condition (4.5) holds by La. 4.2 forj=0,c= 1.
Examples of such kernels are Fejér’s kernel F of (2.14) with F*(v) = 1 — |v| for
[vl| <1, and = 0 for |v| = 1, first considered by M. Theis [182] in this respect,
de la Vallée Poussin’s kernel 6 of (2.13) with 8°(v) = 1 for |[v| < 1,=2—|v| for
1 <|v| <2, and = 0 elsewhere, considered in [159; 171; 177], as well as the kernel
[sinc (at/m)]™ sinc t for some 0 < a < 1; compare [93; 87; 52]. For further
examples see [57; 78; 105; 159].

All of these kernels, as well as sinc, have unbounded support, meaning
that the series (4.1) is generally a true infinite series. This arises from the fact
that the transforms of these kernels vanish outside of some finite interval so that
the kernels themselves are entire functions which cannot vanish identically on an
interval of positive length. In order to obtain kernels ¢ having compact support
one has to consider those ¢ for which ¢" has unbounded support and condition
(ii) of La. 4.2 is satisfied for j = 0 and ¢ = 1. The most convenient examples of
such g are the so-called B-splines of order n = 2, defined by (cf. [138; 148;
pp. 111f.; 150 § 4.4))

n—1
[§~m](—1)”n(g— It —v)

n

= <-

48) Mu©:= 1 V21 L T SEST
n

0, It1>3,

their Fourier transform having the simple representation
(4.9) M,(v) = (sinc (v/2m))" (v ER).

The M,, are piecewise polynomials of degree n — 1 with support [—n/2, n/2]. Hence
the associated generalized sampling series take the form
@10 GPDm= 7= T g Mk

. W = s
V27T - w/"

kl <nj/2

so that in this case the series (4.1) consists of just n nonzero terms at most. If
n = 2, then M, is the familiar roof-function M, (t) =+/27(1 — |t|) for [t|<1,=0
for |t| = 1, and the associated sampling series is the linear spline function inter-
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polating f at the knots k/W, noting that

M, (Wt —k) = Vam, kW
0, t=m/W, m € Z\{k}.
(If n = 1 the sampling series turns out to be the Walsh sampling expansion; see
Sec. 6.3).
As will be seen, the series (4.10) will be of practical interest, however,
only in case n = 2 (or n = 1) or if the M,, are replaced by certain linear combina-
tions of B-splines.

4.2 Convergence theorems with rates for bandlimited kernels

In order to study the basic question as to the rate of approximation in
(4.7) it is best to distinguish between kernels that are bandlimited or not-neces-
sarily so. Concerning the former we have (cf. [50; 158; 159; 160; 177])

Theorem 4.3. Let ¢ € BX with ¢"(0) = 1. There exist constants c,, ¢, > 0,
depending only on o, such that

(4.11) ¢ I f = fllc <SG —flle <, IGf—fllc  (FEC(R); W>0),
I4f being the convolution integral with kernel p of (2.10).

The proof will be a consequence of the subsequent lemma which itself fol-
lows immediately from La. 3.2, noting that I§,f and S§f both belong to B, w
(cf. Chap. 2).

Lemma 4.4. Let ¢ € B} with ¢"(0) = 1. Then for each f € C(R)
(4.12) S{IGT=IGIGE, IESGHf=SESGE (W>0).
Now to the proof of Thm. 4.3. One has by (4.12),
I1S%f = fllc <SG = SEIGLllc + ITGIKE — I fllc + 11%f — flic
<{ISG e, c) + 1M e, cp + DHITESE — flic.

This gives the right-hand inequality of (4.11) since the operators S§ and 1§ are
uniformly bounded with respect to W (see (4.6), (2.11)).

Thm. 4.3 enables one to transfer all results known regarding the approxi-
mation by singular convolution integrals to that by our generalized (convolution)
sampling series. Similar results hold for ¢ € B} with 7 < ¢ < 27 (see [50]).

Let us state two such typical results, namely for the sampling sums based
upon Fejér’s kernel F (cf. [41, p. 149; 153, pp. 34, 110] and de la Vallée Poussin’s
kernel 0 (cf. [171]). For the matter below see [159; 160; 171; 177].

Corollary 4.5. a) If f € C(R), then, uniformly int €R,
Wt — k) }2

ot 4 (8
f(t) wlgnm (Swf)(t)—wh?w 2k§mfw sinc 5
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b) For f € C(R) and 0 < a < 1 there holds
(4.13) lIS{f—fllc =O(W™%) (W - o) & f € Lip (a; C(R)),
¢) For f € C(R) one has
(4.14) [ISyf—fllc=0(W™') (W~ o0)f~ € Lip (1; C(R)),
£~ being the conjugate function of f in the sense of [1, p. 128].
d) For f € C(R) there holds
ISEE—fllc=0o(W™!) (W o)< f=const.

For this example the order of approximation cannot be better than
O(W™") unless f reduces to a constant. This phenomenon, known as saturation
(cf. [41, p. 434]), is typical for many approximation processes. The situation
becomes entirely different for the kernel 8. Indeed,

Corollary 4.6. a) If f € C(R) then, uniformly in t €R,

3 = k 3(Wt—k Wt—k
f(t) = wlilnm (S%O) () = h_r)nm4—k=z_,m f(W)sinc (LE}"‘)) sinc( o )

b) The following assertions are equivalent for 0 < a < 1:
() € Lip’(«; CRY),
(i)  ISWf—fllc=O0W™ ™).

Here one does not have saturation, i.e., the order of approximation can be
arbitrarily good if f is sufficiently smooth. Further it is better by the factor log W
than that for the approximation by the classical sampling sums (cf. Thm. 3.9).

For the Fejér sampling sum of Cor. 4.5 the order is better only if f € Lip (a; C(R))
for some 0 <a <1 but not fora=1.

4.3 Convergence theorems with rates for non-bandlimited kernels;
B-spline kernels

If the kernel ¢ is not bandlimited, then identities of type (4.12), upon
which the proof of Thm. 4.3 is essentially based, do not generally hold. In this
instance one has to proceed in quite a different fashion.

Theorem 4.7. Let ¢ € C(R) with mp) <o for some r € N be given such
that (4.5) holds. If, additionally, the moments

(4.15) \/2 kz t—-klpt—-k)=0 (t€R;j=1,2,...r—1),

then

W gl (g€ COR); W > 0),

(4.16) llg- Shelle <52

(4.17) lIf = Sfllc < Mw (W™ L f;C(R)) (f€C(R);W>0).
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In particular, if £~V € Lip (a; C(R)), 0 <a < 1, then
(4.18) |If = S§fllc=OWT"17%).
Regarding the proof (see [141]), applying the operator S§, to the expan-

sion o)
-1 v u
f g (t) v 1 (r) r—1
_ = = - — + —
g(u) — g(t) El o @ =1 { g (u-y) dy
considered as a function of u, yields by (4.5) and (4.15),

1z AN S L
(Swg)(t)—g(t)=\/2—7rk2 (r_l)!{ g (y)(W—y) dy p(Wt — k).

= — o0

Now the integrals here can be estimated by

k/W -r

K r-1 w
(!‘) N <
{ g (y)(W y) dy‘ o

k=Wt llg®llc,
=1 | Mgl
yielding (4.16). Thm. 4.7 follows by standard arguments (see e.g. [30; 63]).

Thm. 4.7 is the discrete counterpart of a well-known result for convolu-
tion integrals (cf. [41, Prop. 3.4.6 (ii)]) for which

o

(4.19) \/%j wowdu=0 (G=1,2,...,r—1)

plays the role of (4.15). The differences between (4.15) and (4.19) become more
transparent if their equivalent characterizations in terms of Fourier transforms,
given by (recall La. 4.2)

4.20) [ 1DQkm =0 (k€Z;j=1,2,...,1— 1),
and (see [41, p. 197])
4.2 P10 =0 (G=1,2,...,1—1),

respectively, are brought into play. Indeed, when passing from convolution
integrals in (4.3) to the sums (4.1), the finite number of conditions of (4.21)
has to be replaced by a countably infinite number, namely (4.20). This means
by Thm. 4.7, in particular, that the error estimates (4.16), (4,17) remain valid
if S% is replaced by 1§, but not conversely.

The best possible rate which can be achieved according to Thm. 4.7 is
O(W™") provided f is sufficiently smooth, even if m,(p) <o forsomer<y<r+l
and (4.15) holds for j = r, too. In this case, however, one could use other tech-
niques (see [141]) to obtain orders up to O(W™"); it is the counterpart of
[41, Prop. 3.4.6(1)].

Note that under the hypotheses of Thm. 4.7 not only does (4.15) imply
(4.16) but, conversely, (4.16) can be shown to yield (4.15). This means that for
kernels o satisfying m,(p) < oo, condition (4.15) is not only sufficient but also
necessary for (4.16). The situation becomes different if the absolute moments
do not exist, Indeed, for the de la Vallée Poussin sums one has by Cor. 4.6b)
that (4.16) with ¢ = 0 is satisfied for every r € N although m,(6) = oo for all r > 2,
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so that (4.15) cannot hold at all for those r. This is the actual reason why the order
of approximation for bandlimited kernels has been treated separately.

It can also be shown that the order in (4.18) cannot be improved, at least
for 0 <« < 1. In particular, with ¢ given as in Thm. 4.7, then foreachj=0,1,.. .,
r— 1 and each 0 <« <1 there exists a function f, with féj) € Lip? (a; C(R)) such
that

lfo — S&follc #o(W™™%) (W —o0).

The proof depends upon a very general and deep theorem, namely a uniform
boundedness principle with rates due to Dickmeis and Nessel [64; 65]. See [141]
for the foregoing application. For saturation-type results see [37; 138].

Kernels ¢ for which the hypotheses of Thm. 4.7 hold so that the associated
S%f have a prescibed rate of convergence will be constructed to be either linear
combinations of a single B-spline and its translates or linear combinations of
B-splines of different degrees or a sum of both of these types. The idea of taking
linear combinations of a process for the purpose of increasing the order of
approximation is not new; it seems to go back to de la Vallée Poussin’s book on
the subject of 1919. In order to construct kernels of the first type we proceed as
follows; see [37; 138].

Theorem 4.8. ForrEN,r=>2let a,,, =0, 1,...,1r— 1 be the unique
solutions of the linear system ( Vandermonde type)

-l @) -1
4.22) 1Y awt= (M“) 0) (j =0,1,..., [T])
u=0 r
Then

1 le-1p2)
(4.23) @t) 1= aoM(t) + 5 Y audM(t+ ) + M (t— )}
u=1
is a polynomial spline of degree r — 1 having support in [-r/2 — ((r — 1)/2),
/2 + ((r — 1)/2)], satisfying (4.5) and (4.15).

The assertion regarding the support follows directly from definition (4.8).
To show that (4.5) and (4.15) hold, the equivalent characterizations of La. 4.2
will be used. Thereby it suffices to show that p, satisfies assertion (ii) of La. 4.2
forj=0andc=1,aswellasforj=1,2,...,r— 1 and ¢ = 0. For this purpose
consider the transform of ¢,, namely

) R [r-1)/2] R
(V) =Mi(v) jag, + Y ay cosuv = MUV)p(v).
u=1
Obviously, [¢3]9(2kn) = 0 for k € Z\{0} and 0 <j <r— 1 by (4.10). Further-
more, since by (4.22)

(- 2] 1
p(0) = Ay = T
R VI
(-2 1

@v)
PO =1 ¥ am#’"=(W) © @=0,1,...[~ D/2D,
u=1 r
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p® " V(0)=0=

A~

M;

1 2v-1)
) o @=12..),

noting that M; is an even function in case of the last identity, one has by a double
application of Leibniz’s rule,
1\W 1, j=0
0)=

M;

. i 1 \G—9
;190 = ¥, ( )M?)(O)(M—.) (0)=(M;-

j
s=0 S r

This completes the proof. ) )
The derivatives (1/M;)3%(0) = (d/dv)’((v/2)/sin (v/2)) |, - o for small values
of r can be evaluated with aid of the expansion

oo 2n -1

. X 14 5 202 1)
sin x =1 (2n)!
B, being the Bernoulli numbers (cf. [129, p. 35]) and Tab. 1 in [53]). For larger
values of r one may use the expansion of powers of (x/sin x) expressed in terms
of central factorial numbers, recently established [ 189]. See also below.

Now to the second method of constructing kernels fulfilling the assump-
tions of Thm. 4.7.

[Banl  (Ix]<m),

Theorem 4.9. Let p:= (P, P2, - - » Pa) With 2<p; <p, <...<pp, D EN,
1 <i<n.lIf by:=(byp, bon, . - -, bug) i the unique solution of the linear system

n
Y bwpl=8;, (0<j<n-1),

i=1

then

(4.24) ¢(p; b)) = 3 binMy, (1)

i=1
is a polynomial spline of degree p, — 1 having compact support in [—p,/2, pn/2]
and satisfying (4.5) and (4.15) for r = min {p;, 2n}.

The assertions about the polynomial degree as well as the support are
obvious. To verify (4.5) and (4.15) here, La. 4.2 will again be applied. So for the
transform of (4.24), namely

. = . V\Pi
(4.25) ¢ (p; b))V = ) by sinc> |,
i=1
it has to be shown that ¢"(p; by)(2km) = 8, o for k € Z and [¢"(p; ba)19(2km) = 0
fork € Z,1 <j<r— 1. Butitis clear by construction that ¢ (p; ba)(0) =1, and
[¢"(p; ba)]F(2km) = 0 for k € Z\{0}, 0 <j < p,. So it remains to show that

(4.26) [¢"(p; b)1P(0)=0 (1 <j<r-1).

To this end consider the Taylor series expansion of (sinc v/2)Pi about v = 0; it
reads (see [71; 72] for a proof)

0, Isj<r—1.
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(4.27) (smcz) -y Z D" T(p; + 2k, p)v*  (VER),

(it 2k)‘
where T(n, k) are the central factorial numbers of the second kind (see e.g.
[189; 142, p. 213 {f]). Inserting (4.27) into (4.25) the vector b, has to be deter-
mined, so that there holds the expansion

¢©(p; b)(¥) =1 +0(*™) (v—0),

noting sinc is even, which would imply (4.26). Using identities for central fac-
torial numbers this problem leads to the above linear system for b,. For the
details see [71].

In order to obtain a high rate of approximation r and simultaneously a
minimal polynomial degree as well as support (i.e. small number of samples),
the vector p has to be chosenas p '=(r,r+1,...,r+m—1) withm=r/2ifr
iseven, and = (r + 1)/2 if ris odd, r €N, r > 2. In that case the “optimal”’ linear
combination (4.25) turns out to be

— m-—1 ¢_1)\! —_
mot £z e GG

() = m (r ¥

Let us now consider some specific examples for the two methods. The
kernels ¢, for r = 2, 3 and 4 constructed by that of Thm. 4.8 are given by

Pa(t):= My (1),  o3(t) := 7 Ms(t) — {M3(t + 1)+ Ms(t— 1)}

pa(t):= 3 3 Ma(®) = {M4(t +1) + Ma(t— D}

The best possible order of approximation coincides with the index of ¢ and the
number of samples needed is 2, 5 and 10, respectively.
The kernels x; according to Thm. 4.9 are given by x,(t) = M,(t) again, and

X3(t) = 4M3(t) — 3M4(t),  x4(t) = SM4(t) — 4Ms(1),
Xs(1) = 21Ms(t) = 35Mq(t) + 15M; (1),

The orders are equal to the index of x and the number of samplesis 2, 4, 5 and 7,
respectively. See [73].

As a typical approximation theorem for one of these kernels let us state
the following corollary to Thm. 4.7.

Corollary 4.10. For f € C(R) and ¢ = @3 or = X3 there holds
I1S%f — fllc <Kws(W™ ' f;C(R))  (W>0),

the constant K being independent of f and W. The same holds for ¢ = 04 and = x4
with wj replaced by the modulus w,.

It should be noted that the B-spline kernels could also be used to approxi-
mate functions f that are even unbounded. Then there still holds (4.2) at every
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point t of continuity and the convergence is uniform on any finite interval (a, b)
provided f is continuous on (a — €, b + €) for some € > 0. For the proof and
associated error estimates see [37].

4.4 Approximation of derivatives f ®) py samples of f

Whereas Sec. 3.2 dealt with the representation of derivatives in terms of
derivatives of the classical sampling series for bandlimited functions, the aim of
this section is to show that the derivatives f¢*) of a signal f can be approximated
by the derivatives of the generalized series S§/f, i.e., by

d)\s > k
(S§HEXE) == (E) SHH) =W* ) _Z f(W) S&OWt—k) (tER).

in the case of kernels ¢ that are either bandlimited or not. It should first be pointed
out that the situation here is entirely different to that for convolution integrals for
which one has the identity (see [41, p. 129])

d \()
(4.28) (AH)WH)D) = (Zﬁ) GO = WEOND) (€ COR)),

enabling one to reduce everything to the case s = 0. Since (4.28) is generally false
when IY; is replaced by S§, a quite different approach has now to be chosen.

First consider the bandlimited case, namely ¢ € B2. Since ¢*) belongs to
B2, too (cf. (2.3)), one has mo(y®’) < o0 and

(4.29) 11(S6)Pfllc < Wmo(p®)lIfllc (£ € C(R); W > 0).
As an extension of La. 4.4 and (4.6) we have
Lemma 4.9. a) Let ¢ € B} with ¢"(0) = 1 and g € By, 1 < p < o0 for some
W > 0. Then for s € N,
(4.30) (S = (S&£N®) = ([AHHP)®) = TGN (tER).
b) Let p € B,‘, with ¢"(0) = 1. Then for f € C(R) and W > 0
(4.31) (SHHCKSL=TGARHOE), AHESGHE = S§(SHPL.
c) For each 9 €BL with ¢"(0)=1and s EN, there exists a constant M> 0 such that
(4.32) 11S%)Pgllc <MlIg®llc (g€ CO(R); W> 0).

The proofs of parts a) and b) follow as do those of La. 4.4a), using addi-
tionally (4.28). Concerning c), let h(t) := (VP,g)t, p = 7W/2, be the singular inte-
gral of de la Vallée Poussin (cf. (2.13)). Then h € B.y, and one has by (4.30) and
(4.29),

(S8 “glle < (S Vg = (S8)hllc + I SEhllc
<me(e)Willg —hlic + 1K llc.

This establishes (4.32), noting (2.15) and the fact that ||h®[|c = | VP,g®[lc <
< M|g®||c, observing (4.28) and that (2.11) holds with p-norm replaced by
supnorm.
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Proceeding now similarly as in the proof of Thm. 4.3 one can easily show

Theorem 4.10. Let ¢ € B with ¢"(0) = 1. There exist constants C1, >0
such that

allAHOf = e < NESHPT - 1l
<ol - 1Pl (f€COR);W>0).
In particular, there holds for f € C)(R), uniformly in t €R,
Jim (S6)®fc) = £€t).
There also exists a counterpart of Thm. 4.7 on the approximation of
derivatives of f by derivatives of S§ f for the case of non-bandlimited kernels .

For this goal we have the following lemma; its proof follows again by Poisson’s
summation formula and La. 4.2,

Lemma 4.11. Let j,sENy, rENwithj<r—lands<r— 1. Let
¢ € CY(R) be given such that m, _,(p) <ooas well as m,*l(go(s)) < o, and that
(4.5) and (4.15) holds for ¢. Then

j<s

(4.33) \/% Y -kt -k = (tER).
k

Bl C1%!, j=s
Now to the desired result on approximation of derivatives.

Theorem 4.12. Let sENy, rENwiths<r—1.Ifp€E C(S)(R) satisfies
m,(p) < oo, m,(cp(s)) < oo and if (4.6) as well as (4.12) hold, then

(s)
my
1(SH®lle < —(S‘-,”—) 1@l (f€ COR); W > 0),

m(¢*)
s!

1(SE)f = £ |lc <Kw, - (W £, CR))  (f€COR); W > 0).
In particular there holds for f € CC)(R),
lim (S§)f(t) = £C)(t)
W — o

I1(S§) P — gl < g W™ " (g€ C(R); W> 0),

uniformly in t € R; for £¢*) € Lip" ™ %(;; C(R)), 0 < a < 1, one has [|(S§)(f — ()] =
= O(w—r+s—a), W — oo,

The proof is similar to that of Theorem 4.7, using Taylor’s expansion and
(4.24) instead of (4.6) and (4.12) (cf. [53]).

4.5 Truncation, amplitude and jitter errors for generalized sampling series

Let us add a remark on these error types in case of generalized sampling
series. The situation here is much simpler than for the Shannon series since the
S% are bounded operators from C(R) into itself having operator norm mq(y)
which is independent of W.
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Using notations corresponding to those of Sec. 3.5, one can easily show
that fort €R,

(TEOH®W =] 2 f(v—lt,)<p(Wt—k)’<|lfllc Y le(Wt—Kk)l,
IkI> N k| > N
[(AS)(t) | == i [f(ﬁ)—f(i) (Wt — k) | < mg(p)e
€ ° e w w "p 0 ‘p 3
od k k
3| =] X [f(W)—f(WMk «p(Wt—k)l<mo(ap)w(6;f;C(R)),
k=—o

where it was again assumed that <e€,and |6;| <6 forallk and W.

-1
\\Y w
For the details, in particular for further estimates of the truncation error, see

[139;53].

5 Linear Prediction in Terms of Samples from the Past

All of the various methods considered so far enable one to compute or
approximate the value of a required function f at time t provided the samples are
taken from the past and the future relative to t. The question arises whether it is
possible to determine f, at least in the bandlimited case, from samples taken
exclusively from the past (of t). Obviously this is a problem of prediction or fore-
casting of a time-variant process. Whereas this problem is often treated in a sta-
tistical (or stochastical) frame, let us consider it in a deterministic setting. If f is
bandlimited to [-7W, W], one asks for the existence of so-called predictor coef-
ficients ax, € C(or R), k € {1, 2,...,n}, n €N, such that

. n kT
5.1) f(t)= lim Y ak,,f(t _W) (tER),
n>eg=1
where the sampling rate T/W has to be determined, perhaps close to the Nyquist
rate 1/W. This predictor sum would allow the prediction of f(t) from its past
samples f(t —kT/W),k=1,2,... .

In a non-discrete setting, in which the sum in (5.1) is replaced by an inte-
gral, the coefficients by a kernel function, the comparable problem was studied
intensively by N. Wiener [195] — the Wiener-Hopf theory being the key-word —
as well as by A. N. Kolmogorov [102]. The motivation at that time was the devel-
opment of fire control systems.

One of the many applications of linear prediction via (5.1) is speech pro-
cessing, where the approximation of f by finite prediction sums as in (5.1) is used
for a coding technique: In order to transmit a signal more efficiently and less sen-
sitive against noise one does not submit the original discrete-time signal (i.e. the
samples) but the difference between the samples and the prediction sum com-
puted on the basis of the n foregoing samples. Only at the beginning of the trans-
mission the first n samples are submitted directly. The decoder at the receiver then
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operates likewise by also evaluating the prediction sum and adding it to the pre-
diction error received. A main aim in this application is to find a good predictor
in the sense that the prediction error becomes small for a reasonable value of n.
Further applications are to geophysics, such as predicting the presence of oil in a
given area, to medicine, such as predicting extrasystoles from ECG signals, as well
as to economic prediction and forecasting. See [18; 81; 112; 116] in this respect.

Whereas Sec. 5.1 is devoted to the question of the existence of prediction
sums, Secs. 5.2 and 5.3 are concerned with various methods for their construction,
including difference methods leading to algorithms for their calculation. Sec. 5.4
deals with the four error types occurring, and Sec. 5.5 with the prediction of non-
bandlimited functions in terms of the series of Chap. 4.

5.1 Existence of predictor coefficients for bandlimited functions

To handle the topic mathematically one has, first of all, to solve the basic
problem of the existence of prediction sums. For this purpose we proceed similarly
as in Sec. 3.1, define the prediction error for f € B2y, by

(tER),

1 kT
(5.2) @) :=f() - ¥ aknf(t W
k=1

and estimate it by use of Schwarz’s inequality
W

| .
(5.3) I(RH)DI = . Ton I £ we™

—TW

n

1- Y am e—iva/w) dv

k=1
2 1/2
dvl .

Thus the problem of predicting bandlimited functions from past samples amounts

to that of approximating the constant (function) 1 by (one-sided) trigonometric
n

polynomials ). ay,exp {ikt} in the L,;-norm. Fortunately, this problem was
k=1

already solved at least since 1940. Thus there is a general result of N. Levinson

[106, p. 3] stating that for A, > 0, k € N, the system {exp (i\ t)} 5 - ; is complete

in L*(I) provided

5.4) liminf L3 > 1)

(54 liminfy >0,

I) denoting the length of the subinterval I C [—, 7. Setting A=k, I =[-7T,nT],

then condition (5.4) is clearly fulfilled for each T < 1, and the existence of the

an — independent of f, t and W — follows immediately (This special case could

also be achieved by applying a general result due to G. Szegb (cf. [163, pp. 27, 28;

66, p. 189ff]). This yields

n

i

1- Y age™
k=1

W T
<|If —_—
If uzi\/z—ﬂ I

Theorem 5.1. Let f € B2y,. For each 0 <T < 1 there exist predictor coef-
ficients ay, such that (5.1) holds uniformly in t € R. More generally, for 0 <T < 1
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and any 7 € R there exist ay, such that, uniformly int €R,
n
(5.5 f()= lim Y aknf(t - T—%)
noee oy

The translation parameter 7, of interest for 7 2 0, permits sampling to
begin at any point t — 7 —T/W, however far in the past, and still get the approxi-
mate value of fat t €R.

Moreover, it is quite easy to set up conditions on the sample instants in
order to establish the existence of coefficients for the prediction from samples
taken even at non-equidistant nodes which could also lie arbitrarily far in the past.
It is moreover not difficult to deduce similar results on the prediction of deriva-
tives and the Hilbert transform of f € B2y, ; see e.g. [163, Kap. 3] and Sec. 6.3.

However, all of these results have the disadvantage that Levinson’s theo-
rem only guarantees the existence of prediction sums but does not give the actual
construction of the coefficients. For this goal one may try to minimize the integral
in the estimate (5.3) for each fixed n. Using the orthogonality of the trigonometric
system the optimal coefficients may be found to be the solutions of the linear
system

(5.6) Y aysinc((k—j)T)=sinc jT) (1<j<n).
k=1

It is of Toeplitz structure [83] and algorithms exist for finding the solution. The
most common one is also named after Levinson [107]; it has found several modi-
fications for fast computation, see e.g. the recent ones in [61; 62].

Although the prediction problem thus seems to be adequately solvable,
there are still some handicaps. Firstly, the coefficients have to be found by matrix
inversion and are not given in a simple closed form. Secondly, what is even more
important, they depend on the spacing parameter T. Thirdly, the whole set of
coefficients needs to be computed anew if the number of samples, n, is increased.
In order to overcome these handicaps some techniques have been developed; they
lead to simpler but suboptimal solutions for the prediction problem, now to be
discussed.

5.2 Suboptimal prediction sums

Let us begin with a method based on binomial sums, first used in [191,
pp. 70—72], where the predictor coefficients are defined in the closed form

n n

an = (— 1)k+ ! (k) Here the difference d,(v) :=1— Z a,, exp {ikv} equals the
k=1

binomial sum

6D dw= 3 (—1)"(2)(e‘”)“=(1—e“)“.
k=0

In order that the estimate (5.3) for P,f tends to zero for n > oo, T has to be chosen
such that |1 —e"| <1 for v € (—#T, #T). This leads to
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Theorem 5.2. If f € B2y, then (5.1) holds uniformly in t €R for
(5.8)  ay,:= (—1)““(2) and 0<T<1/3.

Although the simple coefficients a, of (5.8) are indeed independent of T,
the sampling rate has to be at least thrice the Nyquist rate (1/W). In order to en-
largen the sample spacing, J. L. Brown Jr. [24] modified the binomial sum method
by including a parameter a* in the definition of the coefficients. A minimization
of the respective difference d,(v) led him to the optimal parameter a = cos (T),
and so to the following

Theorem 5.3. If f € B2y, then (5.1) holds uniformly in t €R for

(cos 7T)* and 0<T < 1/2.

(5.9) ag= (—D“”(E

This result improves the sampling rate to anything larger than twice the
Nyquist rate but the coefficients are now dependent on T. Recently [27] the
binomial sum approach was once more modified by using an even number of
samples; starting from

2n
(5.10) (1-ae V=g 2= ¥ g e kv
k=1
this gives rise to tabulated T-independent coefficients, which yield convergence
foreach 0 <T < 1/2.

A different approach for determining coefficients in an easy form was
employed in [163; 167]; it is based on power series expansions on the unit circle
in the complex plane. To appreciate this approach one rewrites the integral in the
estimate (5.3) as

2 1/2
j @l
Cr

where Ct = {exp (iv); v € [-nT, #T]} is a given subset of the unit circle. If a
sequence of functions g,, n € N, is defined by their power series

nT
(5.11) 1, :={ [ 1da(v) IPdv

—-nT

n
= 1- Y ag
k=1

(5.12) g.(z) = Y bynZ®
k=0

with bgy =1, by = —ays, k=1, 2, . .. n, then I, can be estimated by

f

Cr

oo

Z bank

k=n+1

172 1/2

2
In < j {gn(z) |2dZ + dz

Cr

In order to contruct new predictions sums, sequences of such functions g, have to
be found which are expandable into power series (5.12) on Cp with the additional
condition that the L? (Ct)-norms of g, as well as of the remainders tend to zero
(uniformly) for n = o, If one chooses gn(2) = [g(z)]" with g(z) = a/(a + z), |z] < a,
a > 1, then these conditions are satisfied provided T < (1/7) arc cos (—1/2a); it
turns out that a = 4 is a proper choice for the free parameter. In this case one has
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Theorem 5.4. If f € B2y, then (5.1) holds uniformly in t € R for

nt+k—1
k

1 1
4% and O<T<;T-arccos —g)zo.5399.

(5.13) ay, = (—1)“”(

Thus, even with a sampling rate lower than twice the Nyquist rate it is pos-
sible to predict bandlimited functions with coefficients a,, that are independent
of T. Observe that one might also construct predictor sums converging for larger T,
namely 1/2 <T < 2/3, by the latter power series approach by using other sequences
of functions (5.12); e.g. taking g,(z) = [g(z)]"™® with an appropriate (more com-
plicated) parameter b (see [167]).

Among other construction techniques that might be thought of let us
mention a further one; it is connected with complex polynomial approximation.
Dividing I,,in (5.11) by |z| = 1 does not change its value; so

2 1/2
dz] .

This reduces the prediction problem to that of approximating the function 1/z by
polynomials in z on Ct. Obviously, T has again to be less than 1; otherwise the
unit circle would be closed around the pole of 1/z. For more details and difficul-
ties involved see [163, pp. 50-55].

It can generally be concluded that if one tries to get the sampling rate near
the Nyquist rate, i.e. T close to 1, then more complicated and T-dependent coef-
ficients will be needed.

1 n—1 x
== 2 Ax+1)nZ
=0

]

T

.=
n z x

5.3 Difference methods for prediction

Let us now describe algorithms to establish prediction sums which are
equivalent to those using the coefficients (5.8) and (5.9), as well as include related
ones, but which do not need a totally new calculation of coefficients in case addi-
tional samples are included. Thus they do not require coefficients to depend on n.
This is achieved by using differences, which then connect these formulae with
classical results on Newton series representations. Define these modified differ-
ences of f with increment T/W by

(5.14) v:*‘f(t)=v:f<t)—av:f(t—%), V(L) = f(t) (k EP);

incasea=1, V'f = V¥ reduce to the usual backward differences. The prediction

sums of Thms. 5.2 and 5.3 can indeed be rewritten in terms of these differences.
Thus

n—1

k _I — o 11k +1 nj g ___ir
(5.15) akg Vaf(t w)' DG (k)a f(t w)

0 k=1

are the sums of (5.8) and (5.9) for a = 1 and a = cos 7T, respectively. Formula
(5.14) shows that if a = 1 the prediction sums can be calculated by using only
subtractions and additions; the inclusion of a further sampled value f(t—(n + 1)T/W)
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only requires n further subtractions and one more addition. For examples in form
of difference tables see [121].
A further advantage, the use of these differences leads to a different view
of the prediction error P,f. Starting with the trivial identity
n—1

Vi) = Y (VETT-VE() + (1),
k=0

one obviously has by definition (5.14),

n—1 K T n
(5.16) (P,H)(t)=f(t)—a Y Vaf(t _W) = V. f(1).
k=0

So one can write the prediction error, itself an n-th modified backward difference,
as the complex integral

Py o Lnta i f(z)a " Tdz
B = =g | T
(z=t) [] (z=jiT/W)
i=1
C being a contour enclosing t and all the sample points t —jT/W,j=1,..., n,

enabling one to use complex analysis techniques for its estimation. For the details
see [121] where a method of Norlund [129] for the estimation of Newton series
remainders and one following Boas [11] and based on Polya — representations are
applied. The following generalizations of Thms. 5.2 and 5.3 were established with
these techniques.

Theorem 5.5. If f € By, then forany T<1/3,p €R,

T\ = [k+p k( T)

—| = v -

5.17 f(t+pw) kg_o( « ) flt-
uniformly in t € R, and forany T <1/2,0<a<2 cos (nT),

T
Vif{t— |-
st

k+p

T -
— | =apt1
(5.18) f(t+pw) a kgo c

Concerning the proof of (5.18), one may apply (5.17) to g(z) := f(z)a~ /T

it leads formally to

oo

PT) —owir —p _
t+—— e =
el
yielding (5.18). Note that (5.18) is valid not only for the optimal a = cos 7T but
for a <2 cos 7T. It is clear from the above choice of g that when starting with
the values a*f(t — kT/W) instead of f(t — kKT/W) one can even apply the same simple
algorithm explained above for a= 1.
Thm. 5.5 gives explicit examples of formulae enabling one to predict (or
interpolate) f at arbitrary points, that means, to predict the value of the signal
arbitrarily far ahead (or anywhere between) the set of sample values.

k+p

: T
a~tWIT aV';f(t _W) ,
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Let us finally state a generalization, established with complex methods in
[124], that allows one to halve the sampling rate, i.e. double the possible T-domain,
by using samples from the past not only of f but also of its derivative f'. So it is
the same idea explained in Sec. 3.3 that lies behind the following result. Define
generalized backward differences also involving the derivative, with t, := t —kT/W,
VOf(ty, t,) = f(t —T/W),  Vaf(ty, ti + 1) = Vaf(t — KT/W),
Vaf(ty, te) = (T/W)f'(t — KT/W) — log a f(t —KT/W),
Viaf(t, te+ 1) = V2 Mt tier 1) —aVa " 't s 1, ticr 1),
Vaf(t, ti) = ca(Va ~ 't i) — Vi~ bk te + 1)),
where c,=j/(G— 1) forn=2j—1,j 22, and ¢, = 1 for all other n € N. One has

(5.19)

Theorem 5.6. If f € B2y, then for any sample-spacing 0 <T < 1 and
0<a<[2cos (nT/2)1?, uniformly in t €R,
[-5T, -

w’ W/

Although the differences (5.19) involved look quite unusual, a computa-
tional algorithm is almost as handy for them as for the differences (5.14). For an
example using a simple difference scheme see [ 124]. Note that the partial sums of
(5.20) may indeed be rewritten in a more classical form, giving

(5.20) f(Hh=a Y V¥

k=0

f(t)= im Y {af(t—KT/W) + b f'(t — KT/W)}

noee p=y

2
for suitable ayy,, byn. In particular, if a = 1, so that 0 <T < 2/3, then by, = Tk (2)

if n is even, = Tk(z) n-l if n is odd. The a,, are more complex.

k
Finally observe that Thm. 5.6 could also be generalized to predict arbitrari-
ly far-off function values as for Thm. 5.5.

5.4 Error estimates

It is natural to consider the same four different types of errors in predic-
tion theory as for the sampling theory of Chap. 3 (and 4), namely the truncation
error, already termed prediction error, the aliasing error, quantization and time-
jitter error.

For reasons of simplicity and lack of space let us restrict the matter to the
rate of approximation for the concrete sums of Thm. 5.2. In this case (5.3) and
(5.7) yield
1/2

w .
< —_— __ ivin
[ Pafllc < IIfll, 5T 27T e IEI}?T)»("T] |[1—e"|".
Since |1 — e"|* = 4 sin? v/2, one therefore already has

T n
(521) 17 fle < 11 (/2w (25in T |
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So the prediction error here is of order O(8"), n = o, with 8 := 2 sin (7T/2) < 1

if T < 1/3. The same type of rate holds for any of the prediction methods dealt
with here; only the § differs. Thus for the prediction error in (5.9), due to Brown,
one calculates 8 = sin (7T); for the optimal coefficients of (5.6) it is 8 = sin (7T/2)
(see [157]). Concerning the prediction sums resulting from (5.10), the rate O(82"/*)
with = 0.6863 has been observed in [27]; see [123] for a discussion of these

sums in terms of generalized backward differences.

The above estimates indicate that in order to decrease the prediction error
one should rather increase the sampling rate (i.e. smaller T) than the number of
samples (i.e. larger n). This conclusion lies even nearer when considering an addi-
tional quantization or time-jitter error. Indeed, if quantized sample values are
used in the sums based on (5.8), then there results the quantization error estimate

2l w )

it grows like 2" for n = o, Although the quantization error is smaller for the sums
based on (5.9), where it is ((1 + a)" — 1)e, it still grows like ¥" for some v > 1.
Note that even a rate of decay as f(x) = O((e™'*!), | x| = o, would not suffice to
yield a finite bound on the quantization error. This means that prediction is not
stable against quantization effects, a fact also true for the optimal sums resulting
from (5.6) on account of the Toeplitz structure of the matrix involved. So it is
again preferable to choose the number n of samples small, and sample with a
higher rate; compare also [122].

Concerning the time-jitter error, the same arguments and conclusions apply,
noting that the local errors are now bounded by [/f'||c8; recall Sec. 3.5.

Let us finally consider the aliasing error, additionally arising if the function
is not bandlimited, for the sums built up from (5.8) and (5.9). In regard to (5.8)
it follows directly from the definition of the modulus of continuity that

_ - _qyk+1 (1 '_g
(5.23) “ f(-) k§1( D (k)f( W)

n

<5y (E)e=(2“— De;

k=1

(5.22)

=Wy
C

L e
e )).

Here any T > 0 is allowed.

On the other hand, if W is fixed and n increases, then the right side of
(5.23) tends generally for non-bandlimited functions to infinity, meaning that
the prediction error becomes large for n (too) large. In order to determine some
kind of optimal n in (5.23) assume that () € Lip, («; C(R) for some r € N,
0 < a < 1. First notice that n should be = r + 1; otherwise the error in (5.23) is
of order O(W™ "), W = oo, at best. Now forn=r+ 1 +5s,s € N, it is of order
O(W™"™%) with O-constant given in

T T\ T .
(5.24) w44 +S(W  f; C(m) < (W) Ws s '(W ; £ >;C<R))
W W’

Since there exist functions f for which the inequalities in (5.24) become equali-
ties, the optimal choice fornisr+ 1,i.e. s=0.

r
< 2‘(T) w, (T f(’);C(R)) < 2BLT  ew e,
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Now the situation becomes entirely different if one employs the sums
arising from (5.9).

Theorem 5.7. If f € L2(R) N C(R), then for each 0 <T < 1/2

k+1 k kT
(5.25) 1Py, willc = || £(-) — Z D (cos aT)*f W .
< (1 + cos 1rT) [If— VP,,wlzfllc + (2m) 4| fll,2/ W (sin 7T)",

VP,f denoting the convolution integral of de la Vallée Poussin (cf. Sec. 2).

Regarding the proof, one can estimate

(5.26) 1Py, willc < IIf—= VP flic + |Py,w(VP,D)llc
- ) -5
kz:‘:l -D (k) (cos nT)¥ W f( W

The first and third term on the right of (5.26) can be combined and estimated by

(VP, )f(

C

n

Z ( ) (cos 1rT) [1f = VP,fllc = (1 + cos D) f— VP, fllc,
k=0
which is the first term on right of (5.25). Since VP, f € B2y, for p = 7W/2, the
remaining term is the prediction error (5.21) with f replaced by VP,f. Noting
VP, fll, = 1f" - 07w Il < IIf7[l; = lIfll,, this error can be estimated by the second
term on the right of (5.25).

Observe that whereas Thm. 5.7 gives an estimate of the prediction error
it does not handle its convergence for n, W = oo, Indeed, both terms on the right
of (5.25) contain a factor tending to zero and one to infinity for n, W = oo, Now
this prediction error can be made small if information about || f — VP, f]|c for
W — oo is available, given for example via Lipschitz conditions. Then one has to
choose n appropriately in dependence on W or vice versa. This was carried out in
[169]; it turned out that all the sample instants accumulate at t for n, W = oo,

5.5 Prediction of non-bandlimited functions in terms of splines

The results of the last section show that the prediction of not necessarily
bandlimited functions causes many difficulties since in general the number
of samples and the distance between the sample points determine the magnitude
of the prediction error. Moreover, in all the prediction sums handled so far the
sample points depend on t. This requires all the sample values to be computed or
measured anew when the series have to be evaluated for another t. To avoid these
difficulties we consider in the following the prediction of a function f in terms of
the convolution series (S§ f)(t) in (4.1). In contrast to Chap. 4, ¢ is now assumed
to have compact support contained in [Ty, T,] for some 0 <T, < T, < oo, mean-
ing that ¢(Wt — k) # 0 only for those k € Z satisfying

T, To)

k
(5.27) WE (t_W’t—‘—V— .
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Thus to evaluate the series (S§f)(t) only a finite number of samples taken
from the past is needed and this number is fixed for all f, W and t, contrary to the
various series of Sec. 5.2 for which the number of samples increases for n = oo,
Furthermore, for small changes of t, say from t to t,, there may be some sample
points k/W satisfying (5.27) as it stands, as well as for t replaced by t,. Hence the
corresponding values f(k/W) can be used for the evaluation of (S§f)(t) as well as
(S%D)(t,). Of course, the coefficients (Wt — k) depend on t, but in many cases
the evaluation of y should be simpler than the evaluation of f. Further, the sam-
pling rate here is 1/W and not T/W as for (5.1).

Whereas the theory of generalized sampling series of Chap. 4 can be applied,
all the examples of kernels treated there do not satisfy the assumption concerning
the support needed here. Hence a procedure is needed for contructing kernels
having support in an interval [Ty, T,] for a given T,. For this matter and below
see [53].

Theorem 5.8. For e, €Rand r €N, r > 2, let a,,u=0,1,...,r—1be
the unique solutions of the linear system

r—1 . 1\®
) aur(—i(eo+#))’=(ﬁ.) ©® (G=0,1,...,r—1

H=0
where i =+/—1. Then
r—1
‘pr(t) = Z auer(t — €9~ M)
r=0

is a polynomial spline of degree r — 1 satisfying (4.5) and (4.15) with ¢ replaced
by Y., and having support contained in [Ty, T, with Ty =€, —1/2, T, =€ +3r/2 — 1.

The proof is similar to that of Thm. 4.8 and is therefore omitted.
In view of Thm. 4.1 the generalized sampling series based upon the kernels
¥, satisfy

(5.28) f(t) = Jim (SYF)(t)

for every function f and each point t where f is continuous. The convergence in
(5.28) is uniform on R provided f € C(R). Furthermore, there hold the error
estimates (4.16) and (4.17) with y, instead of ¢ in view of Thm. 4.7.

Choosing now €0 > 1/2, then Ty > 0 as required above, i.e., for the evalua-
tion of the series (Sw’f )(t) only samples taken exclusively from the past, namely
from (t —T;/W, t — To/W) will be needed; in other words, (S F£)(t) can even be
used for prediction purposes. The parameter €, could also be used to vary the
distance between t and the last sample point needed for W fixed. Recall Thm. 5.1;
here €, plays a role similar to 7.

The Y, constructed via Thm. 5.8 for the cases r = 2, 3, 4 with €q = 2, if
r=2,3,and €, = 3, if r = 4, are given, respectively, by

Y2(t) = {3M,(t — 2) — 2M,(t - 3)},

Ysi(t) = -;'{47M3(t —2) = 62M;(t — 3) + 23M;(t — 4)3,
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Ya(t) = 'é- {115M4(t — 3) — 256M4(t — 4) + 203M4(t — 5) — S6M4(t — 6)}.

In the first case the number of samples needed is only 3, the order still being
O(W™2); in the second and third it is 5 with O(W™>), and 7 with O(W™?),
respectively.
For a somewhat more general approach to kernels suitable for prediction
of f as well as for prediction of derivatives f () in terms of samples of f see [53].
Note that in analogy with the series of Secs. 5.1—-5.4 it would have been
preferable to carry out prediction not with the sums

(5.29) (SHE)(D) = = X (W(t"k"))f(k)
’ w \/ﬂ (Wt —k) € (T, T1) Y w w

but with convolution sums with commuted arguments of the form

L Z f _E. k
(5.30)\/51—“(6( (t W)‘P( ).

To, T1)

This is indeed possible; all of the results mentioned here do also apply to (5.30).
However, when evaluating this series for another t the sample values have to be
computed anew as for the series (5.1). Observe that the series of Secs. 5.1 and 5.2
are not of convolution type as are (5.29) and (5.30) above.

Let us add that it would be possible to treat quantization and time-jitter
errors in the present frame; the situation is simpler than that of Sec. 5.4 since the
operator norms || S&'II[C, cjare now uniformly bounded with respect to W; recall
Sec. 4. See [53].

Concerning papers dealing with prediction theory, see also the extensive
reference lists in the commentaries on the work of Norbert Wiener by P. R. Masani,
H. Salehi, T, Kailath, P. S. Muhly and G. Kallianpur in [117].

6 Miscellaneous Topics

This chapter is devoted to shorter discussions of various topics of current
interest in signal theory as well as to extensions of topics treated in the foregoing
chapters, such as sampling at irregularly distributed points, sampling in terms of
other orthogonal systems, sampling in a stochastic and multidimensional setting.

6.1 The sampling theorem, Cauchy’s integral formula, Poisson’s summa-
tion formula and approximate integration

It was already mentioned in Sec. 3.1 that the SST could also be deduced
from Cauchy’s integral formula. On the other hand, the SST can be regarded as a
particular case of the PSF. The aim of this section is to show that certain forms of
these three fundamental theorems in three realms of analysis are even equivalent
in the sense that each can be deduced from one of the others by elementary means.
This can be seen as a contribution to a conjecture posed by S. Bochner, brought
up in Chap. 1. Let us just recall these theorems in elementary (cf. [42]) and more
sophisticated forms (cf. [43; 50]) as will be needed.
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Theorem 6.1. a) (Cauchy’s integral formula). Let C be a simple closed
rectifiable positively oriented curve. If f € B for some o = 0, then

1 f®

(6.1) f(z)= 4 2mi é[ (-2

0, zE€ext C.

dé, z€intC

Theorem 6.2. a) (Poisson’s summation formula). For f € B,y there holds

)

6.2) Y f(%)=\/2_7er“(0)=W | fwdu,

k=—o

the series being absolutely convergent.

Theorem 6.3. a) (Shannon’s sampling theorem). If f € BPy,, 1 <p <o, or f € B}
for some 0 < 0 <7W, then one has for z € C

K

W) sinc (Wz — k),

(6.3) f(z)= i f(

K =—o0

the series being uniformly convergent on each compact subset of C.

In order to prove that Thm. 6.1a) implies Thm. 6.3a), first assume that f € B;,,
0<o<nW, and z # k/W for k € Z, the case z = k/W being obvious. Defining

sin #Wz f(¢)d¢

§

2mi .. (¢—2z)sinw§”’

In(2) =

where Cp, is a square of side length (2m + 1)/W, centered at the origin with sides
parallel to the axes, it will follow by Thm. 6.1a) that for m large enough

_ : S (k) D
Im(2) = f(z) + sin ankZZ_w f(W) W= W

m k .
=f(z)— Y f(W) sinc (Wz — k).
k=-—m
Hence it suffices to show that I, (z) > 0 for m = oo; thisisindeed so for 0 < o < W
(cf. [43]). For the case f € B2y, 1 <p < oo apply the case ¢ < W to the function
f(nz) and letn > 1—.
Let us now show how to deduce Cauchy’s formula from the sampling
theorem. If z € int C, then by the uniform convergence of the sampling series
f(§) ol ( k ) sin M(W§ — k)
. d¢ = fl= | =
©H = 2 W)l rve-we-2

C (¢-2) kK =—o0
An application of the power series representation of the sine-function and the

binomial formula yields

sinw(WE“k)_;': (—1)(aw)yH 2 (2j)(
TWe—k) 2, @+D! & v\

dt.

k 2j—v )
‘W) -2
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Hence it follows that
3 éw(ws—k)(s—z)
I G DX G D S I b k\2i-v v-
=L @i M(V)(Z‘W) g(é—z) ',

The latter integral can be computed to give 2wi for v = 0 and O for » = 0. So one
obtains

d¢

[ sin mM(W§ = k) dt = 2ri i D)W - oy STWZ ~ )

¢ w(WE—k)(&—2) iTo Q2j+ D! m(Wz — k)
Inserting this identity into (6.4), and applying the sampling theorem once more,
yields the result for z € int C, namely,

1 f()dt & (_l_(_) sin m(Wz — k)

2_1rig(‘;’—z)_k:zi,, W/ 7(Wz—Xk)

= f(z).

If z € ext C, then one may proceed in exactly the same manner with the
only exception that the integral for » = 0 on the right of (6.5) vanishes too.
This proves the equivalence of Thms. 6.1a) and 6.3a). For the details see [43].

Now to the equivalence of the SST and PSF. Indeed, if (6.3) holds, one
has by the uniform convergence of the series for each p > 0

14 had k p

| f(hdt= Y f(—-) | sinc (Wt —k)dt.
-p k =—o w -p

Since the integrals on the right side are uniformly bounded with respect to p > 0

the result (6.2) follows for p > oo, noting (3.10). Conversely, applying (6.2) to

f(t) sinc (W(z — t)) € B},w, vields by (1.5)

b

- K\ K -
Y f(—) sinc (W(t - —) ) =W | f(t) sinc (W(z — t))dt = f(2),
kemw \W w e
which is the SST.

Now Cauchy’s as well as Poisson’s formula hold under much weaker
assumptions, in particular for functions that are no longer bandlimited. In that
case the equivalence between the three theorems fails in general. However, more
sophisticated, generalized versions of the three are still equivalent to another in a
certain sense. Let us state these now.

Theorem 6.1. b) Let C be the boundary of a rectangle and C* an open set
containing C together with its interior. If f is holomorphic on C*, then (6.1)
again holds.

Theorem 6.2. b) If f € L'(R) N C(R) with f' € L'(R), then for any 8> 0,
Vr 2 fA(21rk)
k=—o0

(6.10) ) =§:w f(Bk) = "B— —6—
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Theorem 6.3. b) If C is the boundary of the rectangle with corners a + ib,
—a+ib,—a—ib, a—ib for any a, b > 0, and if f is holomorphic in C*, then there
exists Wo > 0 such that for all W > W,

T ot (l(_) sin m(Wz — k)

6.11) f(z)= W/ w(Wz-k)

+(R§)(z) (zE€int Cy),
k/Wi<a
where Cy is the boundary of the rectangle with corners (W) + ib, —a(W) + ib,
—o(W) — ib, (W) — ib, a(W) being given by (W) := ([aW] + 1/2)/W, and R
is defined by
% . sin Wz f(§)

(RWH(@) == Cvjv (¢ —z) sin TW§

Note that the horizontal lines of Cy coincide (apart from the length) with
those of C, whereas the vertical sides of Cy swing around the vertical sides of C
when W — oo,

It can be shown (cf. [43]) that Thm. 6.1b) implies the generalized version
of the sampling theorem, i.e. Thm. 6.3b), and conversely. If the latter is restricted
toreal z=t € (—a, a), 0 <a <o, then the remainder (R{)(t) vanishes for W - oo,
so that

d¢.

W

f(t)= im 2 f

W oo |k/W|<a

sinc(Wt—k) (tE€(—a,a)).

This corresponds to (3.22) provided f is time-limited to [—a, a]. However, (R&)(2)
may diverge for W = o if z =t +iy with y # 0 (cf. [43]).

Further, Thm. 6.2b) implies the AST with the remainder in the form (3.26),
and conversely (cf. [50]). Concerning the direct part, apply (6.10) to

—itu 7W —u

~ ivt c
W _"w[_u f*ei¥tdv (t,u €R)

with 8 = 2#W for f € L'(R) N C(R) with f* € L'(R). Here F, € L'(R) N C(R) with
F; € L'(R), and F;(v) = f(v) sinc (W(t — v)). Then

Fi(u) :=

1 o W 2k + 1)7W vt 1 oo k
6.12) — g Ti2kmWt £ (veivtdv = f(—-) sinc (Wt—k).
©.12) 21W =§;w (2k —Ix)nw ™ V2mW =Z—m w ( )

Multiplying (6.12) by /27W and subtracting (3.31) delivers (3.26).
Concerning the more difficult converse direction, let us give a formal proof;
see [50] for a rigorous one. Integrating (3.23) formally, then

}n f(tydt= Y f(%(v—) § sinc (Wt—k)dt+ [ (Ryf)(t)dt.
— o0 k =—oo — oo — o

The integral in the series is equal to (1/W) by (3.10). To evaluate the rightmost
integral, one rewrites the integral in Ry f of (3.26) by Parseval’s formula as

V2rW | f(u)e2k™WU ginc (W(t — u))du. This gives

— 00
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[ RwH(D)dt

oo oo

= LW [ e ™™ | @™ = 1) sine (W(t = w)dt [du

— oo

=—  Y' /2nf"(2kaW),
k=—o
noting that the inner integral equals —(1/W) for k # 0, and = 0 for k = 0 by (3.10).
This yields (6.10) for § = 1/W. The case § > 0 can be handled by a linear substi-
tution. For connections of these results with the Euler-Maclaurin summation for-
mula see [51].

Let us conclude this section with a nice application of the PSF which in
turn is nothing but an integration of the SST. The fact is that the PSF in the form
(6.10) can be regarded as a quadrature rule with remainder. Indeed, if £ is such
that the second infinite series on the right side of (6.15) becomes small for W — oo,
then the first series on the right is an approximation for the (improper) integral on
the left. The corresponding error can be estimated if the behaviour of the Fourier
transform f"(v) for v = o0 is known; it is influenced by the smoothness of f itself
(recall Sec. 3.4). See [50; 51] for the following.

Theorem 6.4. a) If f € L'(R) is such that fMDe Lipy (a; L' (R)) for some
r€Nand 0<a <1, then forall W>0

k (r+a)Ln® woroe
( ) ‘ (I'+a 1)(21r)r+a~ 1/2

bt 1
f(u)du — = f
| fwdu wkzz_m

b) If g is holomorphic in the strip |Im (z) | < a for some a > 0 such that

a
Jim{ le(t+iy)ldy =0

N(g) := lim I{lg(t+ly)l+Ig(t—ly)l}dt<eo

Y2 a— _o

then for W > (2ma)~!
]‘Q ()d ._.l Z ( l i
Joewdumy 2l ) [S2N® Gaw

The proof of part a) follows from the estimate |£"(v) | < (La%/2)|v|™" ¢
(cf. [41, pp. 189, 194]) and that of part b) from (Ig"(v)| + |g"(—V)|) < (1A/27) -
N(g)e 2'V!, v# 0 (cf. [50]). Part b) with exactly the same error bound can be
found in [175; 176] where methods of complex function theory are used.

6.2 Pointwise convergence of sampling series — Interpolation

Since the pointwise convergence of the classical sampling series (3.1) was
already discussed in Sec. 3.4 — recall Thms. 3.6 and 3.7 — let us here consider the
generalized sampling series (4.1) in this respect. Firstly, (S§)(t,) = f(t,) for
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W — oo if f is continuous at t, (cf. Thm. 4.1). Concerning the behaviour at a
jump discontinuity one has

Theorem 6.5. a) If ¢ € BX with ¢"(0) = 1, and f is a bounded function on R
having a jump at to # 0, then (S§)(to) diverges for W = oo,

b) Let ¢ € C(R) satisfy (4.4), (4.5) and let f be a bounded function having
a jump at ty= 0. The following five assertions are equivalent for a € C:

® wllm (S%0)(to) = af(to + 0) + (1 — )f(to — 0),

(i 7= L et-K=a @ItE[0,1),
k>t
— t—-k)=(01- 1te(o, 1)),
(m)\/—gw( )=(1-0a) (allt€[0, 1))
1 0
(iv) \/————[ (e ¥ qu = b, (k €2),

1 —i2kmu
) E({ p(we ™ du=(1-a)dy, (k €2).

For a proof see [44; 138]. Part a) reveals that generalized sampling series
with bandlimited kernels cannot be used for the approximation of discontinuous
functions. If, however, non-bandlimited kernels are taken into account, then a
function f can indeed be approximated at a point of discontinuity in the sense of
(i) provided the kernel y satisfies one of the assertions (ii)—(v) in addition to (4.4)
and (4.5).

Concerning the singular integral I§,f of (2.10) in comparison, the conver-
gence assertion corresponding to (i) holds iff (iv), or equivalently, (v), holds only
for k = 0. This means that singular integrals do always converge to

0
af(ty +0) + (1 —a)f(ty —0) for = (1/3/2m) | @(u)du (cf.[14, p. 23]).

Properties (iv) or (v) of Thm. 6.5b) enable one to construct kernels satis-
fying (i). Indeed, let x, ¥ € C(R) have compact support contained in [—a, a] and
[—Db, b], respectively, and assume that (4.5) holds for ¢ = x and ¢ = . Then

p(t) =ax(t—a) + (1 —a)yY(t +b)

satisfies (4.4), (4.5) as well as (iv) of Thm. 6.5b). So (i) holds for this ¢ when-
ever the right-hand side is meaningful.

Another property of sampling series important in practice is the so-called
interpolation property. Thus the Shannon series interpolates any function f at the
knots n/W, n € Z in view of the interpolatory property (3.3). This fact can be
transferred to generalized series. In fact,

= f(i) (fE€C(R);n €Z;W>0)

(6.13) (S&f) (% =
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if and only if

(6.14) o(k) =278y,

in turn equivalent to ), ¢"(v+ 2km) =1, vER, by (2.9).

k=—o0

Concerning examples of bandlimited kernels  satisfying (6.13), first note
that there do not exist those which belong to BL. This is seen by applying (3.1)
to f = ¢ with W = 1, noting (6.14) (cf. [159]). If, however, the bandwidth of ¢
is allowed to be strictly larger than m, then one may take

(t) = x(t) sinc (t)

where x € B for some 0 < ¢ <, 1 <p < e with x(0) =+/27. (The limiting case
0 =0, p = o0 would be ¢(t) = sinc (t).) Here p € B}, ., ¢ (0)=1, and (6.14) holds
true. (The fact that ¢"(0) = 1 follows from (3.6) with g = ¢ and W = 1.) This im-
plies that S§f satisfies the assumptions of Thm. 4.1 as well as (6.14), so that it
approximates and interpolates f simultaneously. Particular functions x are

x(t) := [sinc (at/m)]™ for some 0 <a <1, m € N, considered in [94; 52]. In this
case ¢ has a polynomial rate of decay at *o°. For functions x having a faster rate
of decay see [57; 105; 78]. Examples of non-bandlimited kernels ¢ satisfying
(6.13) are X, = ¢, = M,, X3 and x4 of Sec. 4.3.

Let us conclude this section with a surprising phenomenon regarding the
behaviour of generalized sampling series in connection with the interpolation
property (6.13). Since Thm. 6.5b), (ii) and (iii) imply ¢(0) = 0, whereas (6.13)
yields ¢(0) =v/27, a kernel y satisfying Thm. 6.5b) (i) cannot interpolate f at the
same time. In other words, a generalized sampling series S§f with continuous ¢
cannot simultaneously approximate f at discontinuities and interpolate f at the
knots n/W, n € Z. This result partially solves a conjecture of R. Bojanic (Colum-
bus, Ohio) to the effect that every continuous process which interpolates f diverges
at jump discontinuities of f; compare [44]. For the fact that this conjecture holds
true for the Hermite-Fejér process see [16].

If the assumption of ¢ being continuous is dropped, there is no longer a
contradiction between convergence at jump discontinuities and interpolation at
n/W. Discontinuous ¢ can indeed be constructed that have both properties; see
[44; 138].

6.3 Non equidistantly spaced sampling

This section deals with the reconstruction of signals for which the sampling
points are not spaced equidistantly, a situation already mentioned in connection
with jitter error. A reconstruction at more arbitrary points 7y is necessary if the
measurements cannot be taken at the exact points k/W. This happens in medical
signals, for example. Similarly as for the prediction problem there is an existence
theorem leading to error free reconstitution from irregular samples. This theorem
from non-harmonic analysis states (see e.g. [154, p. 112f.]) thatif \\ER, k€ Z
is such that |A\y — k| < a < 1/4, then there exists a (biorthogonal) system
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{yx}x ez C L*[—m, 7] such that each y € L?[—, 7] has the representation
ei)\kt

S T S
yiy= Y (57;5 g(wyy(wdu

k=—0c n

in L*>-norm sense. It is then straightforward to prove the following result (see also
[7; 19] in this connection).

Theorem 6.6. If f € B2y and N\ € R such that M- kI<a<1/4, k€2,

then there exist y, € L*[—7W, 7W], k € Z such that
— - }\_k l_ iy ivt l

f(t) —k;_:m f(w) W —iw e yk(w)dv (t ER).

The actual problem now is to construct such biorthogonal systems { Yk}
this turns out to be rather complicated. Indeed, even if one changes only a small
number of sample instants, e.g. the symmetric change from +1/W into (1/W—2)
just for k = 1, all sample functions change drastically; see [ 162] for this example,
where the biorthogonal system was extracted from the examples evaluated in
[192]. There are only a few sampling series representations known from the
literature which are better applicable. There the irregularity in sampling has to
follow a given rule, e.g. the non-equidistantly spaced sampling at (1/W)(k + c?/k)
for k # 0 with |c| <1/2 in [89]; see [198] for another example of this type.

The most common approach in this connection is usually cited under the
keyword “periodic sampling”, and based on the sample points t, = N(n/W) + 7,
k=0,.. ,N-1,n€Zwith0=7, <7, <...<7y_; <N/W. Thus it is based
on a set of N non-equidistantly spaced sample instants in the interval [0, N/W)
which is repeated N/W-periodically on R. This results in the sampling representa-
tion

N-—-1
wor M) T sin (@w/N)(E=to)

=Y ¥ T :

$EO AWNY(t - te) [T sin {(@W/N)(1,—7;)}
=0
k

j=
j#*

the validity of which is grounded on Lagrange interpolation in entire function
theory and proved using complex integration techniques as explained in Sec. 6.1
(see e.g. [58; 77] in this respect). For a detailed and more applied treatment see

[5].
6.4 The Walsh sampling theorem

A far-reaching extension of the sampling theorem is given by a generali-
zation of frequency bandlimitation on the basis of other integral transforms (or
even on that of locally compact abelian groups). As was observed in Chap. 3, the
interconnection between the Fourier transform on the real line and Fourier series
expansions of periodic functions was fundamental for the evaluation of the sam-
pling series (see also [39]). This connection has been put into a general frame in
[104]. It results in the following “generalized sampling theorem”’, where the
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Fourier kernel exp {ivt} is now replaced by other kernels (a fact pointed out for
Hankel kernels in [97]).

Theorem 6.7. Let K(t, ) € L2(D) for each t € R, I C R some finite interval,
and let {t,}x e z C R be a countable set of reals such that {K(ty, X)}x  z forms a
complete orthonormal set in L2(1). If a function f can be given as

(6.15) f(t) = | K(t, x)g(x)dx (tER)
1

for some g € L*(1), then f admits the sampling representation

6.16) f(ty= Y flts(t) (tER),

k=—o

sk(t) = | K(t, x)K(ty, x)dx.
1

Whereas the integral representation (6.15) of f generalizes the Fourier
inversion integral (3.4), the sampling functions s (t) generalize the Dirichlet
kernel or sinc-function of the classical theorem. A proof of Theorem 6.7 can be
carried out using Hilbert space methods, noting that the s, (t) are the Fourier coef-
ficients with respect to the system {K(ty, X)}x c z of K(t, -) € L%(1). (For connec-
tions with the theory of reproducing kernels see [91]).

Of the many known examples for possible kernels K (see e.g. those given
in [95]) let us treat the example that entails the familiar Walsh sampling theorem
(but is usually derived by other means). It was first established by Pichler [135],
and deduced from Thm. 6.7 in [98]. The generalized Walsh functions needed for
this purpose are defined by [75]

. ZNSX.Z i X1 —it; +
(6.17) ¢(x) = (-1)“I="N®O*1 -5 (x,tER"),
x; €{0, 1} denoting the coefficients of the dyadic expansion x = Y, X; 274,

j=—N(x)

N(x) = max {j € Z; x_; # 0} (the finite expansion has to be taken in ca;e x=k27",
k €Ny, n € Z, a dyadic rational). If t = k € N, the ¢,(x) of (6.17) reduce to the
classical 1-periodic ¢y (x). Since the Walsh functions only take the values 1, the
system {py(x)} obviously fulfills the hypotheses of Thm. 6.7 with R replaced by
R*. Note that the interval I equals [0, 1) or [0, 2~ "), n € Z, using a scaled version
of the Walsh functions in order to make use of the standard theory of Walsh
series (see [190]).

In applied Walsh analysis a function satisfying (6.15) for the specific
system K(t, x) = ¢(x), I = [0, 2") is said to be sequency-limited with highest
sequency 2", n € 2. To apply Thm. 6.7 one chooses t, = k2", k € N, and the
sk(t) as

oo

2"
(D = | @) ,-n()dx =J(t® 27", 277) =
0

= 2-_nxlz_‘“k,z_“(k + 1))(0 (tER")

o
where J(t, p) = I o(s)ds, t, p €R" (X[a, ) being the characteristic function of
0
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[a, b]) is the Dirichlet kernel of Walsh-Fourier analysis, and ® denotes dyadic
addition, i.e. termwise modulo 2 addition of the dyadic expansions (without
carry). Note that y, satisfies px(t) = @i(x), Px(t)@x(u) = @y (t © u) a.e. This yields

Corollary 6.8. If f € L' (R") is sequency-limited with highest sequency
2% ie.,
2n

fit)= | fW()p(s)ds (tERY)
0

with  fy(s) = | f(He(t)dt (sERY)
0

being the Walsh-Fourier transform of f, then

k
(6.18) f(t)= Z f(zn)xn_nk s 1y (LERD.

Note that similarly as in the situation of the classical Thm. 3.1, the series
in (6.16) is a discretization of a convolution integral, namely that being identical
to the Walsh-Fourier inversion integral

2!1

5 fw(s)p(t)dt = j f(x)I(t ® x, 2")dx.

Since the Walsh functions are the characters of the dyadic group one could
also deduce Cor. 6.8 from Kluvanek’s generalized sampling theorem on locally com-
pact abelian groups [101].

Although sequency limitation is a rather severe restriction, satisfied only
by step functions, as can be seen from the representation (6.18), the Walsh sam-
pling theorem has found considerable interest, particularly in the more applied
literature. Thus the aliasing error [47; 85], the quantization and time-jitter errors
have been studied [161]. There it turned out that the dyadic (Walsh)-derivative
introduced in [79; 80; 54; 55; 68], as well as Lipschitz classes, defined in terms of
dyadic translations, play a basic and similar role as do their classical counterparts
in Chaps. 3 and 4. Although it is of less interest, truncation error for sequency-
limited functions has also been dealt with ([115] and [70] for a comment). The
Walsh sampling theorem has also been carried over to higher dimensions [34; 35];
it was further established for random processes [69; 113; 114], stationarity being
given in terms of dyadic shifts {125].

Let us finally add that a sampling theorem can also be established in the
realm of Haar-Fourier analysis on the basis of generalized Haar functions on R*;
see [172; 199]. Another generalization to be mentioned in this connection is
based on a discrete Paley-Wiener theorem; see [ 120]. For group-theoretical aspects
of signal analysis in general see e.g. the work of W. Schempp [146] or [201].

6.5 Random signal functions

In a large number of papers, at least in the theoretical engineering litera-
ture, signal functions are often dealt with in a statistical manner, i.e. they are
given not as deterministic functions but as random processes. The reason is that
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they are assumed to be of stochastic character, they being, for example, signals
of noise, or at least infiltrated with noise. Therefore we would like to explain how
such random signals are mostly modelled in theory and how results of Chaps. 3—5
can be transferred into a random setting.

Given a probability space (£2, A, P), a random process is defined as an
A-measurable function (random variable) X = X(t) = X(t, w) of w € £ for each
t € R. For w = w, fixed the process reduces to a usual function of t, a sample
function or path X. In signal theory it is quite common to further restrict the
class of random processes. One restriction is that of stationarity, equivalent to
time — invariance of certain statistical parameters, the second is that of ergodicity,
allowing statistical means to be approximated by deterministic means of the sample
functions.

We here are only concerned with the most general stationarity condition,
that of stationarity in the weak sense. A random process X belongs to L(Q) if
the norm

(6.19) I1X(t, )l =1 IX(t, w) PdP(w)}¥? = {E[IX(t) P}/
o

is finite for all t € R. X is said to be weak sense stationary (w.s.s), if its autocorre-
lation function (a.c.f.) given by

Ry(t, t+9§) = | X(t, w)X(t + ¢, w)dP(w)
Q

is independent of t € R: Rx(t, t +{) = Rx(£). For reasons of simplicity X is
assumed to be real-valued. Note that for w.s.s. processes Ry is an even function
(of §) with ||[Rxllc = Rx(0), and the norm (6.19) is also independent of t with
I1X1l; = {lIRx |lc } /2. Two processes X, Y € L2(2) are called jointly w.s.s. if their
(cross-) correlation function

Ry, y(t, t+8) = | X(t, w)Y(t +¢, w)dP(w)
Q
is a function of ¢ only.
Concerning continuity, one usually does not work with sample continuity,

i.e. continuous paths of X, but with continuity in the mean (i.m.) instead. Thus a
process X € L?(2) is called continuous i.m. at ty, € R, if

lim E[X(to + h, ©) = X(to, ) 1=o0,
-0

and differentiable i.m. at ty € R, if there exists a process X' € L%(§2) such that

X(tO + h9 0.)) - X(to, w)_ 2
h

lim E[ =0.

h—->o0

X’(tO’ w)

Higher order derivatives X(*) are defined iteratively. Continuity i.m. of a w.s.s.
process is closely connected with classical continuity of the deterministic a.c.f.
The main reason is that the difference of X in L?-norm turns out to be

(6.20) E[IX(t+h) — X(t)[*]={2Rx(0) — 2Ry (h)}.

Using a couple of more or less technical arguments it can be shown that (see e.g.
[164;131)])
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Lemma 6.9. Let X € L*(2) be a w.s.s. process.
a) The following conditions are equivalent:

) X is continuous i.m. at some t, € R,

(ii) X is uniformly continuous i.m. on R,

(iii) Rx($) is continuous at ¢ = 0,

(iv) Rx € C(R).
b) the r-th derivative i.m. X exists at some to ERIff R € C(z')(R).
Similarly, for a w.s.s. process differentiability i. m at some t, € R is equiva-

lent to differentiability i.m. for all t € R as well as to R ) exists at 7= 0 or

R(z) € C(R). So one can simply speak of a differentiable process. If a process

X € L}(Q) is w.s.s., so are the derivatives.
The modulus of continuity of X € L*(8) is defined by

d

If the process is w.s.s., this definition is independent of t. A Lipschitz class
Lip*(a; L*(£2)) can be defined analogously.

wy(8; X; L3 () := sup
Ilh| < &8

27111/2
} [ (6 >0).

» (—1)1(;)X(t +jh)

i=o

Lemma 6.10. Let X € L*(Q) be a w.s.s. process and s € N.
a) There holds

(6.21) wy(8; X; L*(Q)) = {w,(8; Ry ; C(R)}2;
in particular, X € Lip*(a; L*(R2)) iff Rx € Lip*(2a; C(R)).
b) X is continuous i.m. iff lim wy(8; X; L*(Q)) = 0.
5§ —> 0+

For these facts see [164; 53].
The concept of convolution of a w.s.s. process X € L*(£2) with g € L!(R)
will also be needed. Defined by

(6.22) (X *g)(t, w): _f jX(t wigt—wdu (tER;wEN),

it exists with probability 1 (so that one does not need the existence of (6.22) for
each path of X), belongs to L?(§2), and is again w.s.s. (cf. [10]). Further, X * g is
jointly w.s.s. with X, and one has the identities

Ry, x «g(t; t+8) = (Rx * 2)(§),  Rx.gx(t, t+§)=(Rx *g)=f),
Ry «g(t, t +8) = ((Rx * g) * g(—))($).

This enables one to prove the inequality

(6.24) sup E[IX(t) — (X * )(1) P1<{(1 +llgll)IRx = Ry, gllc},

(6.23)

allowing one to derive results on the approximation of w.s.s. processes by con-
volution processes built up with the same kernel functions as those used for con-
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volution integrals of (2.10). In particular, it follows from (2.16) that for any
process X € L%(R) with X" € Lip(; L2(R2)), r €Ny, 0 <a < 1

(6.25) sup {E[IX(t) = (X * 0,)(DPF 2 =0~ ""%) (p > o).

This is basic for the proof of Thm. 6.12. Also employing (6.23) it is possible to
transpose inverse theorems from deterministic approximation theory into the
language of stochastic processes; see [164].

For w.s.s. processes one usually defines bandlimitation in terms of their
a.c.f.;ie. X € L*(Q) is said to be bandlimited with highest frequency content 7W,
if Rx € BEy for some 1 < p < oo, One has the following random counterpart of
the sampling Thm. 3.1 under these notations; compare [3;111; 165].

Theorem 6.11. Let X € L*(2) be a w.s.s. process that is bandlimited with
Ry €EBPy, 1 <p<oo Then
2
] - 0.

The proof of Thm. 6.11, as given in [165], starts with
7|
N N

— 3 Reft- 5 sine w10 + Re[2-X) -
I Re[tgfameonioor 303 Ry

sinc (Wt — k) sinc (Wt —j).
It is followed up with the aid of the deterministic result (3.1), noting that also
Ry(u—-) €EBPy.

Similarly one can establish a random analogue of Thm. 3.9 on the rate of
approximation of a non-bandlimited process by its sampling series.

lim E

N — o

sinc (Wt — k)

N k
IX(t,-)— ) X(W"

k=-N

N k
Xt- ¥ X(W) sinc (Wt — k)

k=-N

2
]= Rx (0)

Theorem 6.12. Let X € L2(2) be a w.s.s. process which is r-times differen-
tiable i.m. with X() € Lip(a; L2(82)), some 0 < a < 1. If Ry satisfies (2.17), some
0<vy<1, then

|

For the proof one first approximates the process X by X * 0,w/, using
Thm. 6.11 and (6.25). The remaining expectation of the squared sampling series
of the difference X — X * 0./, is estimated along the lines of the proof of Thm.
3.9, after rewriting it in terms of correlation functions. Young’s inequality is used;
see [165]. For this matter and generalizations see also [8; 9; 25; 84; 99].

The concept of w.s.s. convolution processes also makes it possible to
reinvestigate the results of Chap. 4 in the present setting. For ¢ satisfying the
assumptions of Thm. 4.1 and X € L?(2) one defines (see [53D)

e Kk 1/2
oo, £

k=—oo

sinc (Wt — k) =O(W ' %*logW) (W —>o0),
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1 k
(SEX)(t, ) ==—2ﬂk_z x(w, )v(Wt-k)
o K B
= Nh_r)nw N k_Z_N X(W , )¢(Wt k).

The S¥; are now bounded linear operators from L?(2) into itself, satisfying

(6.26) 1IS%XIl, =

k-
Z Rx( W )v(Wt—k)cp(Wt u)]

Kypu=—c

< (Rx(0))*my () = mo() I Xl
A lemma on an auxiliary operator will be needed.

Lemma 6.13. For ¢ as above and f € C(R) with f(t) = f(—t) let
1 k—

(Uﬁxf)(t)=2— Z f( )w(Wt—k)w(Wt—p) (teER;W>0)
Tkp=—o W

and T, denote the translation operator, i.e. (7,£)(t) = f(t — ). Then

[(UG £)(1) = £(0) | < (1 + mo(p)) Sup [SE7uE)(E) = (ruf)(D) 1.
For a proof one has only to note that

1 k— _k
5 o)

o
7= 2 f(‘%—t)w(Wt—M)“f(O)‘

u=—o0

< mo(y) Sup L(SHruwD(®) = (T wdO |+ 1(SETE(E) — (ref)(B) |

| -
(UHOO - 101<Z75 X

= —o00

lp(Wt—p)| +

Concerning the convergence of S§;X towards X one now has

Theorem 6.14. Let ¢ € C(R) satisfy the assumptions of Thm. 4.1. For
each continuous w.s.s. process X € L*() there holds, uniformly in t € R,

wlim {E[IX —SE X212 = wlim {E[IX(t, -) — (SEX)(t, ) P2 = 0.

As to the proof, one obtains from La. 6.13,

o k
(6.27) {E[IX-S{XIP=Rx(0)—-2 Y Rx(w—t)«p(Wt—k)+(U&Rx)(t)
k=—o

< (my(p) +3) sup [(S&TuRx (1) — (TR )(D) [.

Since Rx € C(R), it follows as in the proof of Thm. 4.1 that the supremum tends
to zero uniformly in t.

When dealing with orders of approximation one has, as in Chap. 4, to
distinguish between bandlimited and non-bandlimited kernels. In the first case,
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i.e. € B}, one has, corresponding to (4.11) with I§X = X * oy,
SEIGX = IGIG X, I§SEX = S§SEX;
this enables one to proceed as in the proof of Thm. 4.3 (cf. [165]).

Theorem 6.15. Let ¢ € B2 with ¢*(0) = 1. There exist constants c,, ¢, >0
such that

6.28) ¢E[IEX - XP1<E[IS§X - XPI<cE[IEX-X*] (W>0)
for all w.s.s. processes X € LX(R).

The right-hand side can be further estimated by (6.24); this will enable
one to establish direct approximation theorems. For inverse theorems one can
use the left-hand inequality of (6.28) and then proceed as in [164]. For a specific
example on the sampling approximation of w.s.s. processes see [165].

In case the kernel ¢ is not bandlimited one can apply Thm. 4.7 to deduce

Theorem 6.16. Let ¢ € C(R) satisfy the assumptions of Thm. 4.7 with r
replaced by 2r.
a) For all r-fold differentiable w.s.s. processes X € L*() there holds

(my(p) + 3)my, () | /2
2n!

{BIX-S§XIP 2 < (E[|X©OR 2w

(tER;W>0).
b) There exists a constant K > 0 such that for all w.s.s. processes X € L2(§2)
{E[IX - SEX PP <Kw, (W™ X; LX) (tER;W>0).

If X exists, then Ry € C??(R), and applying (4.13) with 2r instead of r
to the right-hand side of (6.27) yields

(mg(p) + 3)m,(p)
20!

This proves a) noting || R¢”lc = || Rymlic =1l X1, Part b) follows analogously
by (4.14).

At last to the prediction of w.s.s. processes. Here the prediction error in
the mean is reduced to the deterministic case (5.2) by evaluating, for Ry € B2y,

i ]

n _kT n n
=Rx(0)—-2 ) aknRX(V)"' PIED aknajnRx(

k=1 k=1j=1

E[IX-S§I°1<

IRE|IcW™2".

N kT
X(t, w)— Y aan(t-W,w)
k=1

G *k)T)
w

2

n
1= Y age™™V| dv.

k=1

1 W
=75 Jw Rx (V)
Thus it is the same difference d,(v) as in (5.3) which is responsible for the con-
vergence of different prediction sums. So one can obviously restate the results
of Sec. § in the foregoing stochastic frame; see [24; 163; 191].
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Thm. 6.16 can in particular be applied to the kernels constructed in Thm. 5.7, so
that one can also treat prediction of w.s.s. stochastic processes by generalized
sampling sums (cf. [53]).

6.6 Multidimensional sampling

This section is concerned with sampling representations of functions of
several variables, such as pictures or TV-signals. Here there is a higher freedom in
defining bandlimitation since the finite support of a multidimensional Fourier
transform could be chosen to be of rectangular form (the most natural generaliza-
tion of the 1-dimensional case) but also circular or even any other region in R".
These different possibilities are treated in detail in [133]. On the other hand, it is
a bit difficuit to get good information in the matter since Parzen’s initiatory
paper [132] is a 30-year old technical report, and the papers by Miyakawa [119]
and Sasakawa [144] appeared only in Japanese. Here it will just be shown how the
results of Chap. 3 can be carried over to higher dimensions when a rectangular
band region is assumed. No review of each aspect of n-dimensional sampling is
attempted; some insight in this direction can be obtained from Story 5 of Higgins’
report [90].

Let t € R" denote the vector t = (ty, . . ., t,) with t; €R, at == (aty, .. ., aty)
the product of t with the scalar a € R, tu = t;u; + tyu, +. .. + t,u, the scalar prod-
uct of t, u € R", and t/u the vector of fractions (t;/uy, . . ., t,/u,). By [a, bl is
meant the n-dimensional rectangle given by all vectors t € R" with a; < t; < b;
foreachj=1, 2, ..., n. Although one might use the concept of entire functions
of exponential type in n-dimensions (see [ 128, pp. 98ff.]) to define bandlimited
functions, only the L*(R™)-Fourier transform is taken for simplicity, defined by

f'(v = lim 2m™™* | fye ™du (vERM),

R = lul< R
where the limit is to be understood in L?-sense. A function f is called bandlimited
to the (rectangular) band [—7W, #W] for some W € R" with positive components
W, if fe LY(R™ N C(R™) with £"(v) = 0 for almost all v & [—7W, 7W]. In that
case one has the Fourier inversion representation
f(H=2m ™ | f(we™dy (tER".
[-7W,nW]
The multidimensional Poisson formula (cf. [174, pp. 251]) now gives rise, similarly
as in Sec. 3.1, to the following result on the discretization of convolution integrals
as well as to a sampling theorem (compare [166] for a proof using Parseval’s
formula).

Theorem 6.17. a) If f,, f, € L2(R™ N C(R") are bandlimited to [-7W, W],
then for each t € R" the convolution

(f, * £)(®) = 2m) ™ | fi(wf(t—wdu
Rn

ool
=em™ Il 3 X fk/WEE—k/W).

j=1 YjkezZ"
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b) if f € LA(R™) N C(R™) is bandlimited to [~nW, 7W], then it is represent-
able on R" by

= % W) [1 sine (Wt ~kp,

ke z" j=1
the series being absolutely and uniformly convergent.

For the truncation error in this frame see [137].

Thus one has at one’s disposal not only a sampling theorem with a rect-
angular lattice of sample points but also the concept of discretized convolu-
tion integrals which will serve as a tool for the estimation of the aliasing error
and the construction of generalized sampling series as in Chap. 4. In this con-
nection one can use product and multi-index kernels based on kernels for con-
volution integrals on R’ (see [10; 127; 6] for the basic theory). If one begins
with the kernel 8 of the de la Vallée Poussin means (2.13) and builds up the

n
Fejér-type kernel 6, (t) = I1 9pj(tj), then it is known that for any f € C(R") with
i=1

(3/0t))"if € C(R™), some t; € Ny, satisfying (3/0t;)if € Lipy,(e5;C(R)) for 0<oy <1
and L; independent of t € R"forj=1, 2,...,n, one has the order of approxima-

tion V3
1 2 3 n—1 n e X
||f—f*08|IC(R")<7(§+T) .Zl Ljpj(JM‘J) (p; = 1).
i=

Further, if f € C(R™) has the rate of decay

n
(6.28) If(DI<M¢ [] 177
i=1
for some 0 <v; <1 and any t€ R" with |t;] > 1,j=1, 2, ..., n, then for p with
each p; = 1
n
If* 0,1 <6"™M¢ [T It;17"
i=1

Thus one has practically all the basic tools at hand to carry over the proof

of Thm. 3.9 to the multidimensional case. Indeed, for the aliasing error defined by

RyDH® =f(H) - ¥ f(k/W) [] sinc (Wjt; —k;),
ke 2zn i=1
Theorem 6.18. Let £ € C(R™) satisfy assumption (6.28). If further
(9/3x;)"if € LipLj(aj;C(R“)) forsomer; ENy, 0<o5<1,j=1,2,...n, then
for any W with W; = (1/2) exp {2/v;},

n

n n
IRwflle < ¥ [01L3+e( Y (2+ (e + )/ log Wy
i=1

k=1

(eiLj + cp) (W)

where ¢, = 7(1/3 + 24/3/m)" " !, and c, = (3/2)" ™ '(6" + 2)M;.
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Concerning generalized sampling series for non-bandlimited functions
having a better rate of convergence for W; > oo let us just introduce those that are
generated by the foregoing multi-index de la Vallée Poussin kernels. Here one
wishes to approximate a non-bandlimited signal function f of n variables by

3p n
i = (3 £ 1w 1T sine {3 -1

ke z" ji=1

sinc ‘% (thj _kj)l .

Theorem 6.19. Let f € C(R ). If (8/0%;) f € Lipy (o ; C(R™) for some
EN,0<o<1,j=1,2,...,n,then forany W € R" wzthW > 2/m,

]

i=1 2

The constant behaves like a" with a <20 forn=2,a<12forn=>5.

For the proof one has to show that an n-dimensional analog of the estimate
(4.11) is valid; see [ 166] for details.

Let us finally note that one could in principle also carry over the more
general results of Chap. 4 and also some of Chap. 5 to a multidimensional setting,
some of the main tools needed having been sketched. One reason that the matter
has not been worked out so far is that in addition to the n-dimensional approach
one has complicated technical formalities. Another reason might be that in prac-
tical applications the multidimensional approach is not employed but coordinates
are just handled iteratively, i.e., a picture is first discretized into lines, each of
which is then sampled in the classical fashion of Sec. 3.

If = S¥fllcam < c; 1+(1+(1+1r))
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